News

Z provozních a organizačních důvodů budou všechny objednávky přijaté v průběhu prosince 2025 zpracovány až na začátku roku 2026. Děkujeme za vaši trpělivost a pochopení.

For operational and organizational reasons, all orders received during December 2025 will be processed at the beginning of 2026. Thank you for your patience and understanding.

View all news

Ordering rules

We accept only signed CCALA order forms send by post or their scans send by the e-mail. We accept your original institutional orders too. By submitting the online form, you explicitly agree with our terms and conditions.

Read Terms & Conditions

Contact

Culture Collection of Autotrophic Organisms (CCALA)
Experimental Garden and Gene Pool Collections Třeboň
Institute of Botany of the CAS, v. v. i.
ccala@ibot.cas.cz

Go to contacts
2024-07-16hobit

Order & Payment

Order & Payment

How to order and pay

INFORMACE K OBJEDNÁVKÁM PRO ČESKÉ ZÁKAZNÍKYPokud nerozumíte dobře anglicky, chcete si od nás objednat kmeny řas, sinic nebo mechorostů a dostali jste se až sem, je zde pro Vás možnost vyplnit objednávkový formulář v češtině. Na jeho zadní straně jsou potřebné instrukce. Pro objednání více jak 12 kmenů prosím použijte přílohu objednávkového formuláře. V případě potřeby nás také můžete kontaktovat na ccala@ibot.cas.cz.

Ordering procedure 

All strains of algae, cyanobacteria or non-seed plants available from the CCALA culture collection are listed in our on-line catalogue. Cultures listed as "Temporarily not available" are also kept in the collection, but cannot be purchased at the moment (i.e. are being cleaned, tested or are not in a good enough condition to be offered to our customers).

To order strains from CCALA, you have two options:
You can directly choose the desired strains from the catalogue by clicking at the "Add to card" orange button and select what type of culture you want. Unlimited number of strains can be added into the cart. When done with your selection, click on the button "Cart" in the top panel of the webpage, fill in and adjust the desired amounts and packing types and click on "Write order" button. On-line order form will appear; fill out the form carefully (red point marked fields are obligatory), check your order and click on "Confirm order". 
By submitting the online form, you explicitly agree with our "Terms and conditions". A copy of the order form will be sent to you e-mail address. 

Alternatively, you can download, fill out and send CCALA order form to ccala@ibot.cas.cz. You can scan a signed form or use electronic signature. In case of ordering more than 12 items, please use an Attachment form

You can also use our fax number: +420384721136 or following postal address:

Culture Collection of Autotrophic Organisms (CCALA)
Experimental Garden and Gene Pool Collections Třeboň
Institute of Botany of the CAS, v. v. i.

Dukelská 135, 379 82 Třeboň
Czech Republic

When submitted, both ways of ordering from CCALA are understood as firm and no extra confirmation will be sent to you, unless expressly stated in the note field of your order. Please, let us know as soon as possible if you need to cancel your order!

Payment

In order of days upon receiving your order, we will prepare your invoice and send it to your e-mail address together with a summary of the payment options. If you need to have your own order number stated on the invoice, please write it clearly in the "Purchase Order No." field of the order form or send us your own order form together with our form. 

Your payment can be realized either by direct bank transfer. Please, do not forget to fill in your invoice number as a variable code of the payment, as your payment cannot be identified without this number!

Please note that all international orders including the "Express delivery" orders are dispatched after a confirmation of the corresponding payment. To make the procedure faster, you can send us a copy of the confirmation document you get from your bank or the message of acceptance from the payment portal.

Standard delivery time is about 3 weeks, but it can be shorter or even couple weeks longer, depending on the specific demands of the individual strains ordered. We always prepare a fresh culture when a strain requested. Please note that we deal with living organisms and this time estimate is about optimal by our long-term experience to protect you from receiving thin or not very well established culture.

2024-07-13admin

Terms and Conditions

Terms & Conditions

General Terms and Conditions

Standard delivery time is about 3 weeks, but it can vary depending on the size of the order and specific demands of the individual strains requested. Delivery time to countries far from central Europe such as e.g. Eastern Asia or South America can be up to one month.

Maximal ordering amount is 20 items or 8 kg per one order (larger orders will be divided).

Standard shipment of the ordered strains is by regular postal service. "Express delivery" orders are sent by priority mail. Delivery by courier or other mail services (e.g. EMS) is provided on request and the price will be calculated separately according the provider’s price list.

By ordering strains from CCALA, customer agrees to not resell, redistribute or lend our strains to the third person/subject, and to quote the original strain code including the collection acronym (CCALA) and the strain number in all publications and patent applications.

All customers are kindly asked to provide in return a reprint of any publication (in PDF) resulting from the research projects, in which our strains were examined.

All CCALA strains are clonal and unialgal. We do not guarantee the axenity of our strains (meaning that they can contain small amount of bacteria, exceptionally also fungi). Number of cells in the cultures are not quantified prior to the shipment, but the quality of the growth is always controlled visually (growth opacity in liquid cultures, amount of biomass on the agar surface).

The strains are usually identified by the depositor, and although we revise the strains periodically and update the names according to the current knowledge on taxonomy, we cannot guarantee that the strain names are correct. We would appreciate your suggestions on the names corrections.

If the cultures arrive in unsatisfactory condition, we will send a replacement culture free of charge on request if CCALA will be informed within 14 days of receipt. When ordering media, mixed cultures or other services, please specify your request in the "Additional notes/ Special requirements" field of the Order form.

By submitting on-line order form, customer agrees with CCALA policies and charges.

2024-12-04admin

Strain Deposition

Strain Deposition

Strain deposition

The CCALA collection accepts cyanobacterial and algae cultures especially associated with taxonomic research (reference strains for new genus and species), cultures from interesting habitats or strains with biotechnological potencial. 

If you are interested in depositing the cultures, it is advisable to arrange in advance with the curator of the collection - Mgr. Josef Juráň, Ph.D. (Josef.Juran@ibot.cas.cz). 

The deposited culture must meet the following rules:

  1. Cyanobacteria and algae cultures correspond to the following requirements may be deposited to the CCALA collection:
    1. the material will be physically delivered to the collection;
    2. the cultures will be unialgalcontaining only one species of cyanobacteria or algae.;
    3. the cultures will be axeniccontaining only cyanobacteria or algae, without any other microorganisms. or xeniccultures containing small quantities of other microorganisms in addition to cyanobacteria or algae.;
    4. in the case of xenic cultures, only a small amount of bacterial contamination is possible; in special cases (at the decision of the curator) cultures contaminated with small amounts of filamentous fungi may be accepted; culturers contaminated by protozoa will not be accepted into the collection or will be rejected during quarantine;
    5. the deposited material will be accompanied by a signed deposit protocol (download here), or other necessary documentation;
    6. the deposited material will correspond the conditions set out in the Nagoya Protocoloverview of individual signatories of the protocol and conditions of access to their genetic resources are managed by ABSCH - the Access and Benefit-Sharing Clearing-house (https://absch.cbd.int/)..
  2. If the culture contains a genetically modified organismgenetically modified organism is an organism whose genetic material has been intentionally changed in a way that is not possible to achieve by natural recombination. According valid legislation related to GMO., its deposition must be discussed with the curator in advance.
  3. A strain could be deposited in the CCALA collection if it correspond at least one of the following conditions related to the implementation of the Nagoya Protocoloverview of individual signatories of the protocol and conditions of access to their genetic resources are managed by ABSCH - the Access and Benefit-Sharing Clearing-house (https://absch.cbd.int/)..
    1. was acquired before 12th October 2014;
    2. originates in a country which is not a signatory of  the Nagoya Protocol;
    3. originates in a country which is a signatory to the Nagoya Protocol but does not regulate access to its genetic resources;
    4. was obtained after 2014 in one of the countries that are signatories to the Nagoya Protocol and regulate access to their genetic resources, but it is with complete required documentation.
  4. If the conditions (points 1 and 3) are met, the deposited strain will receive an unofficial collection number and will be kept in quarantine mode for at least 3 months.
  5. After the quarantine, the strain will be checked and if it meets the above-mentioned material quality conditions (points 1b. - 1d.), It will be included in the collection assortment under the official number.
  6. In case of keeping the strain in the private (non-public) part of the collection is this service is charged according to the valid price list of the CCALA collection.
  7. The collection reserves the right not to accept deposited strains that do not meet some conditions listed above (points 1 and 3) or discard and transmit material during the quarantine period and return them to the depositor no later than 6 months after the physical delivery of the material to the collection.
2024-07-14admin

Collection Links

Collection Links

Addresses of Culture Collections in the World

  • S A G
  • Culture Collection of Algae (SAG)
  • Sammlung von Algenkulturen, Albrecht-von-Haller-Institute for Plant Science, University of Göttingen, Nikolausberger Weg 18, 37073 Göttingen, Germany
2024-07-13admin

Cultures maintenance, media

Cultures maintenance, media

Cultures maintenance, media

Cultures maintenance conditions

  • Strains are kept in tubes or in 100 ml Erlenmeyer flasks placed in racks with glass shelves.  
  • The cultures are maintained in air-conditioned rooms, with a temperature regime of 21°C (some strains, mainly cyanobacteria, freshly prepared cultures for customers) or 16°C (most cyanobacteria and algae strains for long-term maintenance). Polar strains are maintained in glass fridges at temperatures around 10°C.
  • The cultures are irradiated by a panels of LED light tubes that gives cca 15  - 35 μmol photons m−2 s−1, light is controlled to 12h/12h light/dark cycle.
  • Strains are transferred to fresh media in cca 3-4 months intervals.

Media receipts

  • Any nutrient solution can be used as liquid, or solidified by 1.5% of agar. In this case medium is labeled "agar".

 

2025-04-16admin

Galdieria medium - modified

Galdieria medium - modified

Galdieria medium - modified

Authors: Gross, W. & Schnarrenberger, 1995

Dissolve chemicals in 500 ml of distilled water. Add 2,07 ml of Fe-EDTA solution and 2,00 ml trace metal solution. Make up to 1000 ml. Autoclave.

Adjust medium to final pH of 1.8 or as desired with 0.5 M H2SO4 

Component

Quantity Usedto 1 litre

(NH4)2SO4 1,5 g
MgSO4.7H2O 0,3 g
KH2PO4 0,3 g 
CaCl2.2H2O 0,02 g
Fe-EDTA (see following recipe) 2,07 ml
Trace metals solution (see following recipe) 2,00 ml 

Fe-EDTA solution 

To 50 ml od dH2O add following component and fill in with dH2O do 100 ml.
 

Component

Quantity Used

KOH (1 N solution) 5,4 ml
FeSO4.7H2O 0,5 g
EDTA (no Na-EDTA!) 0,52 g 

Trace metals solution 

Component

Quantity Usedto 1 litre

ZnSO4.7H2O 220 mg
H3BO3 2860 mg
CoCl2.6H2O 40 mg
CuSO4.5H2O 79 mg
(NH4)2Mo7O27.6H2O 130 mg
NaVO3 40 mg
MnCl2.4H2O 1790 mg

Literautre: 

  • Gross, W. & Schnarrenberger, C. 1995. Heterotrophic Growth of Two Strains of the Acido-Thermophilic Red Alga Galdieria sulphuraria. Plant Cell. Physiol. 36(4): 633 - 638.
2024-05-20hobit

S medium

S medium

S medium

Dissolve the chemicals in 500 ml of distilled water, add 1 ml of trace metals solution and make up to 1000 ml. Autoclave.

 

Component

Quantity Usedto 1 litre

KCl 1,0 g
NaHCO3 16,8 g
K2HPO4 0,5 g
NaNO3 2,5 g
K2SO4 1,0 g
NaCl 30,0 g
MgSO4.7H2O 0,18 g
FeSO4.7H2O 0,018 g
EDTA 0,08 g
Trace metal solution 1 ml

Trace metals solution 

Component

Stock solutiong.l-1 dH2O

Quantity Usedto 1 litre

H3BO3 - 2,860 g
MnCl2.4H2O - 1,810 g
ZnSO4.7H2O - 0,220 g
CuSO4.5H2O 79,0 1 ml
Na2MoO4.2H2O - 0,391 g
Co(NO3)2.6H2O 49,4 1 ml
2024-05-20hobit

Z medium

Z medium

Z medium

Authors: Zehner & Staub 1961

For most of cyanophytes. 

Into 900 ml of dH2O add 10 ml of first six stock solutions. Add 1 ml of rest solutions. Autoclave. The final pH should be 6,6 

 

Component

Stock Solutiong.l-1 dH2O

Quantity Usedto 1 litre

NaNO3 46,7 10 ml
Ca(NO3)2.4H2O 5,9 10 ml
K2HPO4 3,1 10 ml
MgSO4.7H2O 2,5 10 ml
Na2CO3 2,1 10 ml
Fe-EDTA solution see following recipe 0,2 ml
Trace metals sollution see following recipe 0,08 ml

Fe-EDTA solution 

Component

Quantity Used

HCl (35%) 2,2 ml
dH2O 250 ml
FeCl3.6H2O 4,5 g
Na2EDTA 4,65 g

Trace metals solution 

Component

Quantity Usedto 100 ml

H3BO3 0,31 g
MnSO4.4H2O 0,223 g
Na2WO4.2H2O 0,003 g
(NH4)6Mo7O24.4H2O 0,0088 g
KBr 0,0119 g
KI 0,0083 g
ZnSO4.7H2O 0,0287 g
Cd(NO3)2.4H2O 0,0154 g
Co(NO3)2.6H2O 0,0146 g
CuSO4.5H2O 0,0125 g
NiSO4(NH4)2SO4.6H2O 0,0198 g
Cr(NO3)2.7H2O 0,0037 g
V2O4(SO4)3.16H2O 0,0035 g
Al2(SO4)3K2SO4.24 H2O 0,0474 g

 

Literature:

  • ANDERSEN, R.A. [ed.] 2005Algal culturing techniques. Elsevier, Amsterdam, 578 pp. 
  • ZEHNDER in STAUB, R. 1961. Ernährungphysiologish-autökologische Untersuchung an den planktonischen Blaualge Oscillatoria rubescens DC. Schweizerische Zeitschrift für Hydrologie 23: 82-198.
2024-05-20hobit

Dunaliella medium

Dunaliella medium

Dunaliella medium

Author: Schlösser 1982

The cultivation of halophilic algae.

Mix 20 ml of the stock macroelements solution with 910 ml of artificial seawater and 30 ml of seawater soil extract.

 

Component

Stock Solutiong.l-1 dH2O

Quantity Usedto 1 litre

KNO3 10,00 g 10 ml
K2HPO4 1,00 g  10 ml
MgSO4.7H2O 1,00 g 10 ml
soil extract see following recipe 30 ml
artificial seawater see following recipe 930 ml

Soil extract

1/3 of 6 litre flask fill with garden or leaf soil (not too great humus or clay content), and deionized water until it stands 5cm above the soil. Sterilize by heating in a steamer one hour, twice in a 24h interval. Separate the decanted extract by centrifugation. Fill into small containers, autoclave 20 minutes/1 atmosphere; store in refrigerator.
 

Artificial seawater 

Component

Quantity Usedg.l-1 dH2O

NaCl 30,0 g
MgSO4.7H2O 31,0 g 
KCl 1,5 g
CaSO4 2,0 g

 

Literature:

  • Andersen, R.A. [ed.] 2005. Algal culturing techniques. Elsevier, Amsterdam, 578 pp. 
  • Schlösser, U.G., 1982. Sammlung von Algenkulturen. - Ber.Dt.bot.Ges. 95: 181-276.
2024-05-21hobit

Czurda medium

Czurda medium

Czurda medium

The receipt is not awailable at this moment

2024-05-20hobit

Spirulina medium

Spirulina medium

Spirulina medium

Authors: Aiba and Ogawa 1977, Schlösser 1994

For culturing Spirulina. 

Prepare Solutions I and II. Autoclave separately and cool; asepticilly combine the two solutions. Aseptically add 1 ml of cyanocobalamin (B12) solution.

 

Component

Stock Solutiong.l-1 dH2O

Quantity Usedto 500 ml

Solution I. (500 ml)
NaHCO3 - 13,61 g
Na2CO3 - 4,03 g
K2HPO4 - 0,50 g 
Solution II. (500 ml)
NaNO3 - 2,5 g
K2SO4 - 1,0 g
NaCl - 1,0 g
MgSO4.7H2O - 0,2 g 
CaCl2.2H2O - 0,04 g
FeSO4.7H2O - 0,01 g
Na2EDTA.2H2O - 0,08 g
Trace metals solution see following recipe 5 ml
Vitamins solution see following recipe 1 ml

Trace metals solution 

Component

Stock Solutiong.l-1 dH2O

Quantity Usedto 1 litre

Na2EDTA.2H2O - 0,5 g
FeSO4.7H2O - 0,7 g
ZnSO4.7H2O 1,0 1 ml
MnSO4.7H2O 2,0 1 ml
H3BO3 10,0 1 ml
Co(NO3)2.6H2O 1,0 1 ml
Na2MoO4.2H2O 1,0 1 ml
CuSO4.5H2O 0,005 1 ml

Vitamin Solution

Dissolve the cyanocobalamin in 1 liter dH2O. Filter-sterilize and store frozen.
 

Component

Quantity Usedto 1 litre

Cyanocobalamin (vit. B12) 5 mg

 

Literauture

  • AIBA, S., and OGAWA, T. 1977. Assessment of growth yield of a blue-green alga:Spirulina platensis in axenic and continuous cultur. J. Gen. Microbiol. 102: 179 - 182. 
  • ANDERSEN, R.A. [ed.] 2005Algal culturing techniques. Elsevier, Amsterdam, 578 pp. 
  • SCHLÖSSER, U.G. 1994. SAG-Sammlung von Algenkulturen at the University of Göttingen Catalogue of Strains 1994. Bot. Acta 107: 111 - 186.
2024-05-20hobit

Jaworski’s Medium

Jaworski’s Medium

Jaworski’s Medium

Author: Schlösser 1982

For freshwater algae.

Dissolve stock solutions 1 - 9 (1 ml each) in 1 litre of distilled water.

 

Component

Stock Solutiong.l-1 dH2O

Quantity Usedto 1 litre

Ca(NO3)2.4H2O 20,0 1 ml
KH2PO4 12,4 1 ml 
MgSO4.7H2O 50,0 1 ml
NaHCO3 15,9 1 ml
EDTA solution see following recipe 1 ml
Trace metals solution see following recipe 1 ml
NaNO3 80,0 1 ml
Na2HPO4.12H2O 36,0 1 ml
Vitamin solution see following recipe 1 ml 

EDTA-solution

Component

Quantity Usedto 200 ml

FeNa-EDTA 0,45 g
Na2EDTA 0,45 g 

Trace metals solution

Component

Quantity Usedto 200 ml

H3BO3 0,496 g 
MnCl2.4H2O 0,278 g
(NH4)6Mo7O24.4H2O 0,20 g 

Vitamins solution

Component

Quantity Usedto 200 ml

cyanocobalamin 0,008 g 
thiamine HCl 0,008 g 
biotin 0,008 g 

 

Literature:

  • ANDERSEN, R.A. [ed.] 2005. Algal culturing techniques. Elsevier, Amsterdam, 578 pp. 
  • SCHLÖSSER, U.G., 1982. Sammlung von Algenkulturen. - Ber.Dt.bot.Ges. 95: 181-276.
2024-05-20hobit

WC medium

WC medium

WC medium

Authors: Guillard & Lorenzen, 1972

For planktonic algae and cyanobacteria.

Combine 1 ml of stock solution and add TRIS buffer. Autoclave. Add sterille vitamin solution do cool medium.

 

Component Stock Solutiong.l-1 dH2O Quantity Usedto 1 litre
CaCl2.2H2O 36,8 g 1 ml
MgSO4.7H2O 37,0 g 1 ml
NaHCO3 12,6 g 1 ml
K2HPO4.3H2O 5,7 g 1 ml
NaNO3 42,5 g 1 ml
Na2SiO3.5H2O 21, 2 g 1 ml
trace metal solution see bellow 1 ml
vitamins solution see bellow 1 ml
TRIS - 0,115 g

Trace metals solution

Component Quantity Usedto 1 litre
Na2EDTA 4,360 g
FeCl3.6H2O 3,150 g
CuSO4.5H2O 0,010 g
ZnSO4.7H2O 0,022 g
CoCl2.6H2O 0,010 g
MnCl2.4H2O 0,180 g
Na2MoO4.2H2O 0,006 g
H3BO3 1,000 g

Vitamins solution

Sterile by filtration

Component Quantity Usedto 1 litre
thiamin 0,1 g
biotin 0,0005 g
cyanokabalamin 0,0005 g

 

Literature:

  • GUILLARD, R.R.L., LORENZEN, C.J. (1972): Yellow-green algae with chlorophyllide C. Journal of Phycology 8: 10-14
2024-05-20hobit

Porphyridium medium

Porphyridium medium

Porphyridium medium

Authors: Brody & Emerson 1959, modif. Pekárková (pers. comm.)

Mix Solution 1 with 0,5 ml of Solution 2 and 0,5 ml of Solution 3 and autoclave.
 

Solution 1.

Component

Quantity Usedto 1 litre

KCl 4,00 g 
NaCl 3,13 g 
KNO3 1,24 g
MgSO4.7H2O 2,50 g
K2HPO4 0,66 g
Ca(NO3)2.4H2O 0,17 g 
KI 0,05 g
KBr 0,05 g

Solution 2.

Component

Quantity Usedto 250 mililitres

Fe-EDTA 4,6 g 

Solution 3.

Component

Quantity Usedto 1 litre

H3BO3 3,09 mg
MnSO4.4H2O 1,20 mg
CoSO4.7H2O 1,40 mg
CuSO4.5H2O 1,24 mg
ZnSO4.7H2O 1,43 mg
(NH4)6Mo7O24.4H2O 1,84 mg

 

Literature:

  • BRODY,M. & EMERSON,R. (1959): The effect of wavelength and intensity of light on the proportion of pigments in Porphyridium cruentum. - Am.J.Bot. 46: 433-440.
2024-05-20hobit

Euglena medium

Euglena medium

Euglena medium

Suitable for most axenic cultures of Euglena and Chlorogonium.

To approximately 950 ml of dH2O, add each of the components in the order specified while stirring continuously.

Bring the total volume to 1 l with dH2O.

 

Component

Quantity Usedto 1 litre

Na-acetate 1 g
Beef extract 1 g
Tryptone 2 g
Yeast extract 2 g
CaCl2.2H2O 0,01 g

 

Literature:

  • ANDERSEN, R.A. [ed.] 2005. Algal culturing techniques. Elsevier, Amsterdam, 578 pp.

 

2024-05-20hobit

Brackish water

Brackish water

Brackish water

Component

Stock Solutiong to100 ml dH2O

Quantity Usedto 1 litre

KNO3 1,00  20 ml
K2HPO4 0,1 g 20 ml
MgSO4.7H2O 0,1 g 20 ml
Soil extract see following recipe 30 ml
Trace metal solution see following recipe 5 ml
dH2O - 450 ml
Artificial seawater see following recipe 450 ml

Soil extract

1/3 of 6 litre flask fill with garden or leaf soil (not too great humus or clay content), and deionized water until it stands 5cm above the soil. Sterilize by heating in a steamer one hour, twice in a 24h interval. Separate the decanted extract by centrifugation. Fill into small containers, autoclave 20 minutes/1 atmosphere; store in refrigerator.
 

Trace metals solution 

Component

Quantity Usedto 1 litre

ZnSO4.7H2O 8,82 g
MnCl2.4H2O 1,44 g
MoO3 0,71 g 
CuSO4.5H2O 1,57 g 
Co(NO3)2.6H2O 0,49 g

Artificial seawater 

Component

Quantity Usedg.l-1 dH2O

NaCl 30,0 g
MgSO4.7H2O 10,0 g 
KCl 1,5 g
CaSO4.2H2O 2,0 g
2024-05-21hobit

MASM

MASM

MASM

The receipt is not awailable at this moment

2024-05-20hobit

1/2 SŠ medium

1/2 SŠ medium

1/2 SŠ medium

Authors: Zachleder & Šetlík, 1982 

Combine 970 ml of dH2O and 10 ml of each stock solution. Autoclave. After cooling add 1,5 ml of 1N NaOH (=10g NaOH in 250 ml of dH2O.

For Euhalothece add 100g of Na2CO3 to 1 litre of medium.

 

Component

Stock Solutionto 1 litre of dH2O

Quantity Usedto 500 ml

Stock solution 1.

MgSO4.7H2O 98,8 g 10 ml
Trace metals elements (see following recipe) 100 ml 
 

Stock solution 2.

KNO3 202,0 g 10 ml
CaCl2.6H2O 1,1 g
Fe-EDTA 1,8 g
 

Stock solution 3.

KH2PO4 34,0 g  10 ml

Trace metals solution 

Component

Quantity Usedto 1 litre

H3BO3 3,086 g
MnSO4.4H2O 1,18 g
CoSO4.7H2O 1,404 g
CuSO4.5H2O 1,244 g
ZnSO4.7H2O 1,43 g
(MN4)6Mo7O24.4H2O 1,84 g

 

Literature: 

  • ZACHLEDER, V. & ŠETLÍK, I. 1982. Effect of Irradiance on the Course of RNA Synthesis in the Cell Cycle of Scenedesmus quadricauda. Biologia Plantarum 24(5): 341 - 353. 

 

2024-05-20hobit

HS medium for Chlamydomonas

HS medium for Chlamydomonas

HS medium for Chlamydomonas

Author: Sueoka 1960

Into 500 ml of dH2O add quantity of stock solutions (see belowe) fill in 990 mililitre with dH2O. Autoclave. After cooling add 10 ml od stock solution no. 5.

 

Component

Stock Solutiong.l-1 dH2O

Quantity Usedto 1000 ml

Stock stolution 1. 

NH4Cl 50,00 10 ml
CaCl2.2H2O 2,00
 

Stock solution 2.

MgSO4.7H2O 20,00 10 ml
FeNa-EDTA 1,84
 

Stock solution 3.

Na2MoO4.2H2O 5,00 (or 0,5 g to 100 ml dH2O) 0,5 ml
 

Stock solution 4. 

Trace metals solution see following recipe 1 ml
 

Stock solution 5.

Add after autoclaving!
KH2PO4 72,00  5 ml
K2HPO4 134,00

Trace metals solution 

Component

Quantity Usedto 1 litre

H3BO3 3,086 g
MnSO4.4H2O 1,180 g
CoSO4.7H2O 1,404 g
CuSO4.5H2O 1,244 g
ZnSO4.7H2O 1,430 g
(NH4)6Mo7O24.4H2O 1,840 g

 

Literature:

  • Sueoka, N. 1960. MITOTIC REPLICATION OF DEOXYRIBONUCLEIC ACID IN CHLAMYDOMONAS REINHARDI. PNAS 46(1): 83-91.
2024-05-20hobit

Medium for non-seed plants

Medium for non-seed plants

Medium for non-seed plants

Authors: Baslerová & Dvořáková 1962

Liverworts, ferns and duckweeds are maintained in 250 ml Erlenmayer's flasks on agar medium in the air conditioned room at 12-15°C. They are irradiated similarly as other strains (see above).

Into 900 ml of dH2O add quantity of stock solutions (see belowe) fill in 1 litre with dH2O. Autoclave.

 

Component

Stock Solutiong.l-1 dH2O

Quantity Usedto 1 litre
 

Mosses (M)

Liverworts & ferns (JKL)

NH4NO3 80,00 1.5 ml 2.5 ml
KH2PO4 136,00 0.5 ml 0.75 ml
MgSO4.7H2O 120,00 0.5 ml 0.4 ml
CaCl2.2H2O 110,00 0.2 ml 1,0 ml
FeCl3.6H2O 16.20 0.2 ml 0.16 ml

 

Literature:

  • Baslerová, M. & Dvořáková, J. 1962. Algarum, Hepaticarum Muscurumque in cultiris collectio. NCSAV, Praha, 59 pp. 
2024-05-20hobit

Gorham’s solution

Gorham’s solution

Gorham’s solution

Authors: Koeman & Hoek 1980

In 1000 ml distilled water dissolve the following chemicals and add 2 ml of soil extract.

 

Component

Quantity Usedto 1 litre

NaNO3 160 mg
K2HPO4 17,5 mg
TRIS buffer 200 mg
MgSO4.7H2O 153,6 mg
CuSO4.5H2O 0,0156 mg
CaCl2 35 mg
Na2SiO3 11,63 mg
Na2CO3 20 mg
Fe-citrate 3 mg
Citric acid 3 mg
Na-EDTA (Chelaton III) 600 mg
Na2MoO4.2H2O 0,00705 mg
ZnSO4.7H2O 0,0392 mg
CoCl2 0,0183 mg
MnCl2.4H2O 0,283 mg

Soil extract

1/3 of 6 litre flask fill with garden or leaf soil (not too great humus or clay content), and deionized water until it stands 5cm above the soil. Sterilize by heating in a steamer one hour, twice in a 24h interval. Separate the decanted extract by centrifugation. Fill into small containers, autoclave 20 minutes/1 atmosphere; store in refrigerator.

 

Literature: 

  • KOEMAN,R.P.T. & HOEK,C. van den (1980): The taxonomy of Ulva (Chlorophyceae) in the Netherland. - Brit.Phycol.J. 16: 9-53.
2024-05-20hobit

BBM medium

BBM medium

BBM medium

Authors: Bold 1949, Bischoff and Bold 1963

Useful for many algae, especially chlorococcalea algae, volvocalean algae (e.g.Chlamydomonas), filamentous green alga Klebsormidim flaccidum, xanthophycean alga Heterococcus endolithicus etc. (Andersen, 2005).

Into 900 ml of dH2O add 10 ml of first six stock solutions. Add 1 ml of rest solutions. Autoclave. The final pH should be 6,6

 

Component

Stock Solutiong.l-1 dH2O

Quantity Usedto 1 litre

NaNO3 25,00 10 ml
CaCl2.2H2O 2,50 10 ml
MgSO4.7H2O 7,50 10 ml
K2HPO4 7,50 10 ml
KH2PO4 17,50 10 ml
NaCl 2,50 10  ml
EDTA solution see following recipe 1 ml
Acidifed iron solution see following recipe 1 ml
H3BO3 11,42 g 1 ml
Trace metals solution see following recipe 1 ml

EDTA solution 

Component

Quantity Usedto 1 litre

EDTA 50,00 g
KOH 31,00 g 

Acidified Iron Solution

Component

Quantity Usedto 100 ml

FeSO4.7H2O 0,498 g
H2SO(96%) 0,1 ml

Trace metals solution 

Component

Quantity Usedto 1 litre

ZnSO4.7H2O 8,82 g
MnCl2.4H2O 1,44 g
MoO3 0,71 g 
CuSO4.5H2O 1,57 g 
Co(NO3)2.6H2O 0,49 g

 

Literature:

  • ANDERSEN, R.A. [ed.] 2005Algal culturing techniques. Elsevier, Amsterdam, 578 pp. 
  • BISCHOFF, H.W., and BOLD, H.C. 1963.Phycological Studies IV. Some Soil Algae From Enchanted Rock and Related Algal Specie. University of Texas, Austin, 6318: 1 - 95.
  • BOLD, H.C. 1949. The morphology of Chlamydomonas chlamydogama sp. nov.. Bull. Torrey Bot. Club. 76: 101 - 108. 
2024-05-20hobit

BG11 medium

BG11 medium

BG11 medium

Authors: Allen 1968, Allen and Stainer 1968, Rippka et al. 1979

For culture of freshwater, soil, thermal and marine cyanobacteria (Andersen, 2005).

Into 900 ml of dH2O add 1 ml of the Fe-citrate solution, and then add remaining components. Autoclave. Final pH should be 7,4 after cooling.
 
Component

Stock Solutiong.l-1 dH2O

Quantity Usedto 1 litre

Fe-citrate solution see following recipe 1 ml
NaNO3 - 1,5 g
K2HPO4.3H3O 40 1 ml
MgSO4.7H2O 75 1 ml
CaCl2.2H2O 35 1 ml
Na2CO3 20 1 ml
Na-EDTA 1,0 1 ml
Trace metals solution see following recipe 1 ml

Fe-citrate solution  

Component

Stock Solutiong.l-1 dH2O

Quantity Usedto 1 litre

Citric acid 1 ml
Ferric ammonium citrate 6 1 ml

Trace metals solution 

Component

Stock Solutiong.l-1 dH2O

Quantity Usedto 1 litre

H3BO3 - 2,860 g
MnCl2.4H2O - 1,810 g
ZnSO4.7H2O - 0,220 g
CuSO4.5H2O 79,0 1 ml
Na2MoO4.2H2O - 0,391 g
Co(NO3)2.6H2O 49,4 1 ml

 

Literature:

  • ALLEN, M.M. 1968. Simple conditions for growth of unicellular blue-green algae. J. Gen. Microbiol. 51: 199 - 202.
  • ALLEN, M.M., and STAINER, R.Y. 1968. Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte. Arch. Mikrobiol. 32: 270 - 277. 
  • ANDERSEN, R.A. [ed.] 2005Algal culturing techniques. Elsevier, Amsterdam, 578 pp. 
  • RIPKA, R., DERUELLES, J., WATERBURY, J.B., HERDMAN, M., and STAINER, R.Y. 1979. Generic assignment, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111: 1 - 61.
2024-07-23admin

References

References

2023

  • AGUILÓ-NICOLAU, Pere, et al. Singular adaptations in the carbon assimilation mechanism of the polyextremophile cyanobacterium Chroococcidiopsis thermalis. Photosynthesis Research, 2023, 156.2: 231-245.
  • ANTONARU, Laura A., et al. Common loss of far-red light photoacclimation in cyanobacteria from hot and cold deserts: a case study in the Chroococcidiopsidales. ISME communications, 2023, 3.1: 113.
  • BENREDJEM, Lamia, et al. First Polyphasic Study of Cheffia Reservoir (Algeria) Cyanobacteria Isolates Reveals Toxic Picocyanobacteria Genotype. Microorganisms, 2023, 11.11: 2664.
  • BRÜCKNER, Kathrin; GRIEHL, Carola. Permeabilization of the cell wall of Chlorella sorokiniana by the chitosan-degrading protease papain. Algal Research, 2023, 71: 103066.
  • ÇAKMAK, Ramazan; UZUNER, Ugur. Functional Production, Extracellular Expression, and Antitumor Activity of Mouse Alpha-Klotho in Model Microalga Chlamydomonas reinhardtii. 2023.
  • CASULA, Mattia, et al. Cultivation and nutritional characteristics of Chlorella vulgaris cultivated using Martian regolith and synthetic urine. Life Sciences in Space Research, 2024.
  • CASULA, Mattia, et al. Discovery and Characterization of Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAS) in a Green Microalga Grown Under a CO 2 Environment. Available at SSRN 4597144.
  • CASULA, Mattia, et al. Effects of a novel bioprocess for the cultivation Synechococcus nidulans on Mars on its biochemical composition: focus on the lipidome. Biotechnology and Bioprocess Engineering, 2024, 29.2: 361-376.
  • CASULA, Mattia, et al. In-situ resource utilization to produce Haematococcus pluvialis biomass in simulated Martian environment. Algal Research, 2024, 79: 103489.
  • CHAUHAN, Pragati, et al. Role of Nanotechnology in Biomass‐Based Biobutanol Production. Production of Biobutanol from Biomass, 2023, 255-282.
  • CONCAS, Alessandro, et al. Modeling and experimental assessment of Synechococcus nidulans cultivation using simulated Martian medium and astronauts’ urine. Acta Astronautica, 2023, 205: 185-198.
  • DVOŘÁK, Petr, et al. Population genomics resolves cryptic species of the ecologically flexible genus Laspinema (cyanobacteria). Journal of Phycology, 2024.
  • FAIS, Giacomo, et al. Cultivation of Chroococcidiopsis thermalis Using Available In Situ Resources to Sustain Life on Mars. Life, 2024, 14.2: 251.
  • GEETA, Aribam, et al. Distinct genome trichotomy in members of Hapalosiphonaceae is guided by habitat adaptation with Mastigocladus laminosus UU774 as a case study. Algal Research, 2024, 103603.
  • HINDÁKOVÁ, Alica; DVOŘÁK, Petr. Kamptonema animale (Microcoleaceae), terrestrial cyanobacterium colonizing geoglossoid fungi (Central Slovakia). Biologia, 2023, 78.8: 2059-2072.
  • JAVED, Muhammad Asad, et al. A novel two-stage immobilized bioreactor for biohydrogen production using a partial microalgal-bacterial (Chlorella vulgaris and wastewater activated sludge) co-culture. Sustainable Energy Technologies and Assessments, 2024, 62: 103624.
  • JAVED, Muhammad Asad; HASSAN, Ashraf Aly. A kinetic modeling and energy conversion evaluation of biohydrogen production using a co-culture of green microalgae and wastewater activated sludge. International Journal of Hydrogen Energy, 2024, 57: 148-160.
  • KAŠTOVSKÝ, Jan, et al. Hot is rich—An enormous diversity of simple trichal cyanobacteria from Yellowstone hot springs. Diversity, 2023, 15.9: 975.
  • KIM, So‐Won, et al. A study of Klisinema koreana sp. nov.(Desertifilaceae, Cyanobacteria) from the Republic of Korea based on morphological, ecological and molecular analyses. Phycological Research, 2024, 72.2: 67-78.
  • KRZEMIŃSKA, Izabela, et al. Auxin supplementation under nitrogen limitation enhanced oleic acid and MUFA content in Eustigmatos calaminaris biomass with potential for biodiesel production. Scientific Reports, 2023, 13.1: 594.
  • KUMAR, Naresh, et al. Description of Cylindrospermum solincola sp. nov. from Jammu and Kashmir, India and Further Insights into the Ecological Distribution and Morphological Attributes of Cylindrospermum badium. Diversity, 2023, 15.5: 592.
  • LUKAVSKÝ, J., et al. The alga Bracteacoccus bullatus (Chlorophyceae) isolated from snow, as a source of oil comprising essential unsaturated fatty acids and carotenoids. Journal of Applied Phycology, 2023, 35.2: 649-660.
  • LUZ, Rúben, et al. Description of Azorothrix ramosa gen. et sp. nov.(Tolypotrichaceae, Cyanobacteria), a new Tolypotrichaceae from Atlantic oceanic islands. FOTTEA, 2024, 24.1: 99-108.
  • LUZ, Rúben, et al. Description of four new filamentous cyanobacterial taxa from freshwater habitats in the Azores Archipelago. Journal of Phycology, 2023, 59.6: 1323-1338.
  • MACHALOVÁ, Linda, et al. Bioaccumulation and Biosorption of Anthropogenic Radionuclides by Cyanobacteria Synechococcus Bigranulatus: Speciation and Compartmentalization Study. Available at SSRN 4358618.
  • MARIOTTO, Marina, et al. Cultivation of the PHB-producing cyanobacterium Synechococcus leopoliensis in a pilot-scale open system using nitrogen from waste streams. Algal Research, 2023, 70: 103013.
  • MARLITA, Marlita; NGUYEN, Nhung HA; ŠEVCŮ, Alena. THE IMPACT And interaction of unicellular green algae with bio-based plastics.
  • MCGOVERN, Callahan A., et al. Unbiased analyses of ITS folding motifs in a taxonomically confusing lineage: Anagnostidinema visiae sp. nov.(cyanobacteria). Journal of Phycology, 2023, 59.3: 619-634.
  • MOON, Utkarsh Ravindra; DURGE, Arpana Ashokrao; WADHAI, Vijay S. Impacts of Agricultural Practices (Pesticides and Fertilizers) and Amalnala Stream on Amalnala Lake in Gadchandur, India. Journal of Pure & Applied Microbiology, 2024, 18.1.
  • OGONKOV, Andrei, et al. Characterization of an Unusual α‐Oxoamine Synthase Off‐Loading Domain from a Cyanobacterial Type I Fatty Acid Synthase. ChemBioChem, 2023, 24.18: e202300209.
  • ORZECHOWSKA, Aleksandra, et al. Novel technique for the ultra-sensitive detection of hazardous contaminants using an innovative sensor integrated with a bioreactor. Scientific Reports, 2024, 14.1: 12836.
  • PATEL, Alok, et al. Innovative biorefinery approaches for upcycling of post-consumer food waste in a circular bioeconomy context. Chemical Engineering Journal, 2024, 152990.
  • PŘIBYL, Pavel; PROCHÁZKOVÁ, Lenka. Trebonskia zoosporica, gen. et sp. nov., a new member of the Goniochloridales (Eustigmatophyceae, Stramenopiles) with an unusual mode of reproduction. European Journal of Phycology, 2023, 58.2: 199-213.
  • RAMÍREZ-ROMERO, Adriana, et al. Aqueous phase recycling: impact on microalgal lipid accumulation and biomass quality. Environmental Science and Pollution Research, 2024, 1-15.
  • RASOULI–DOGAHEH, Somayeh, et al. Khargia gen. nov., a new genus of simple trichal Cyanobacteria from the Persian Gulf. Fottea, 2023, 23.1: 49-61.
  • SINZINGER, Korbinian, et al. Biorefinery concept for Cylindrospermum alatosporum CCALA 988 extracting multiple high-value compounds and residue utilization by P. pastoris fermentation producing phytase. Algal Research, 2023, 76: 103302.
  • SHISHIDO, Tânia Keiko, et al. A cylindrospermopsin-producing cyanobacterium isolated from a microbial mat in the Baltic Sea. Toxicon, 2023, 232: 107205.
  • SNIEGOŇOVÁ, Pavlína, et al. The effect of oil-rich food waste substrates, used as an alternative carbon source, on the cultivation of microalgae—a pilot study. Microorganisms, 2023, 11.7: 1621.
  • ŠTENCLOVÁ, Lenka, et al. Occurrence of aetokthonotoxin producer in natural samples–A PCR protocol for easy detection. Harmful algae, 2023, 125: 102425.
  • SUZUKI, Hirono, et al. Phylogeny and lipid profiles of snow-algae isolated from Norwegian red-snow microbiomes. FEMS Microbiology Ecology, 2023, 99.6: fiad057.
  • TENEVA, Ivanka, et al. Polyphasic characterisation of Microcoleus autumnalis (Gomont, 1892) Strunecky, Komárek & JR Johansen, 2013 (Oscillatoriales, Cyanobacteria) using a metabolomic approach as a complementary tool. Biodiversity Data Journal, 2023, 11.
  • THU, Tran Thi Ngoc, et al. Comparison of biofloc formation from microalgal cultivation by auto-and bacteria-associated types of flocculation. Vietnam Journal of Biotechnology, 2023, 21.1: 121-127.
  • WANG, Pengchong, et al. Advanced treatment of secondary effluent from wastewater treatment plant by a newly isolated microalga Desmodesmus sp. SNN1. Frontiers in Microbiology, 2023, 14: 1111468.
  • WATANABE, Shin; MEZAKI, Naoto; NAKADA, Takashi. Ultrastructure and phylogeny of Parietochloris toyamaensis sp. nov. and P. bilobata (Trebouxiophyceae). European Journal of Phycology, 2023, 58.1: 35-44.

2022

  • BARCYTĖ, Dovilė, et al. Redefining Chlorobotryaceae as one of the principal and most diverse lineages of eustigmatophyte algae. Molecular phylogenetics and evolution, 2022, 177: 107607.
  • DANI, Sophie, et al. Selection of a suitable photosynthetically active microalgae strain for the co-cultivation with mammalian cells. Frontiers in Bioengineering and Biotechnology, 2022, 10: 994134.
  • DE CARVALHO SILVELLO, Maria Augusta, et al. Microalgae-based carbohydrates: A green innovative source of bioenergy. Bioresource Technology, 2022, 344: 126304.
  • DOPPLER, Philipp, et al. Coelastrella terrestris for adonixanthin production: Physiological characterization and evaluation of secondary carotenoid productivity. Marine Drugs, 2022, 20.3: 175.
  • HENTSCHKE, Guilherme S., et al. Zarconia navalis gen. nov., sp. nov., Romeriopsis navalis gen. nov., sp. nov. and Romeriopsis marina sp. nov., isolated from inter-and subtidal environments from northern Portugal. International Journal of Systematic and Evolutionary Microbiology, 2022, 72.10: 005552.
  • IOVINELLA, Manuela, et al. Resolving Complexities in Taxonomic Lineages of the Organellar and Nuclear Genomes of Galdieria through Comparative Phylogenomic Analysis. Biorxiv, 2022, 2022.10. 04.510841.
  • JAVED, Muhammad Asad, et al. Exogenous carbon substrates for biohydrogen production and organics removal using microalgal-bacterial co-culture. ACS Sustainable Chemistry & Engineering, 2022, 10.47: 15490-15500.
  • JAVED, Muhammad Asad; HASSAN, Ashraf Aly. Photo fermentative biohydrogen production potential using microalgae–activated sludge co-digestion in a sequential flow batch reactor (SFBR). RSC advances, 2022, 12.46: 29785-29792.
  • JAVED, Muhammad Asad; ZAFAR, Abdul Mannan; HASSAN, Ashraf Aly. Regulate oxygen concentration using a co-culture of activated sludge bacteria and Chlorella vulgaris to maximize biophotolytic hydrogen production. Algal Research, 2022, 63: 102649.
  • KRONUSOVÁ, Olga, et al. Factors influencing the production of extracellular polysaccharides by the green algae Dictyosphaerium chlorelloides and their isolation, purification, and composition. Microorganisms, 2022, 10.7: 1473.
  • LI, Chulin, et al. Comparison of production and fluorescence characteristics of phycoerythrin from three strains of Porphyridium. Foods, 2022, 11.14: 2069.
  • MATTILA, H., et al. Differences in susceptibility to photoinhibition do not determinegrowth rate under moderate light in batch or turbidostat-a studywith five green algae. Photosynthetica, 2022, 60.1: 10-20.
  • MOURYA, Megha, et al. Latest trends and developments in microalgae as potential source for biofuels: The case of diatoms. Fuel, 2022, 314: 122738.
  • MUTOTI, Mulalo I.; JIDEANI, Afam IO; GUMBO, Jabulani R. Using FlowCam and molecular techniques to assess the diversity of Cyanobacteria species in water used for food production. Scientific Reports, 2022, 12.1: 18995.
  • ONAY, Melih. Sequential modelling for carbohydrate and bioethanol production from Chlorella saccharophila CCALA 258: a complementary experimental and theoretical approach for microalgal bioethanol production. Environmental Science and Pollution Research, 2022, 29.10: 14316-14332.
  • PERMANN, Charlotte, et al. Photophysiological investigations of the temperature stress responses of Zygnema spp (Zygnematophyceae) from subpolar and polar habitats (Iceland, Svalbard). Phycologia, 2022, 61.3: 299-311.
  • RAMÍREZ-ROMERO, Adriana, et al. Chlorellaceae feedstock selection under balanced nutrient limitation. Fermentation, 2022, 8.10: 554.
  • RAMIREZ ROMERO, Adriana, et al. Potential of Chlorellacea as Energy Sources Under Balanced Nutrient Limitation. Available at SSRN 4202191.
  • RASOULI-DOGAHEH, Somayeh, et al. Thainema gen. nov.(Leptolyngbyaceae, Synechococcales): A new genus of simple trichal cyanobacteria isolated from a solar saltern environment in Thailand. PLoS One, 2022, 17.1: e0261682.
  • RZYMSKI, Piotr, et al. Screening the survival of cyanobacteria under perchlorate stress. Potential implications for Mars in situ resource utilization. Astrobiology, 2022, 22.6: 672-684.
  • TAMRE, Erik; FOURNIER, Gregory P. Inferred ancestry of scytonemin biosynthesis proteins in cyanobacteria indicates a response to Paleoproterozoic oxygenation. 2022.

2021

  • ALMENDINGER, Martin, et al. Characterization of selected microalgae and cyanobacteria as sources of compounds with antioxidant capacity. Algal Research, 2021, 53: 102168.
  • ARORA, Shaweta; MISHRA, Girish. Effect of gibberellin, methyl jasmonate and myoinositol on biomass and eicosapentaenoic acid productivities in the eustigmatophyte Monodopsis subterranea CCALA 830. Journal of Applied Phycology, 2021, 33: 287-299.
  • BARCYTĖ, Dovilė; HODAČ, Ladislav; ELIÁŠ, Marek. Settling the identity and phylogenetic position of the psychrotolerant green algal genus Coleochlamys (Trebouxiophyceae). Phycologia, 2021, 60.2: 135-147.
  • BASHIR, Faiza, et al. Singlet oxygen damages the function of Photosystem II in isolated thylakoids and in the green alga Chlorella sorokiniana. Photosynthesis Research, 2021, 149.1: 93-105.
  • BASU, Shayontani, et al. Cyanobacteria of the Indian Sundarbans: A Potential Source of Powerful Therapeutic Agents. International Journal of Chemical and Environmental Sciences, 2021, 2.2: 56-61.
  • BREINLINGER, Steffen, et al. Hunting the eagle killer: A cyanobacterial neurotoxin causes vacuolar myelinopathy. Science, 2021, 371.6536: eaax9050.
  • BITTNER, M., et al. Cytotoxic and Genotoxic Effects of Cyanobacterial and Algal Extracts—Microcystin and Retinoic Acid Content. Toxins 2021, 13, 107. 2021.
  • CHEKANOV, Konstantin, et al. Combined production of astaxanthin and β-carotene in a new strain of the microalga Bracteacoccus aggregatus BM5/15 (IPPAS C-2045) cultivated in photobioreactor. Biology, 2021, 10.7: 643.
  • GENG, Ruozhen, et al. Establishment of a new filamentous cyanobacterial genus, microcoleusiopsis gen. nov.(microcoleaceae, cyanobacteria), from benthic mats in open channel, jiangxi province, China. Diversity, 2021, 13.11: 548.
  • HAUEROVÁ, Radka, et al. Tenebriella gen. nov.–The dark twin of Oscillatoria. Molecular Phylogenetics and Evolution, 2021, 165: 107293.
  • HENTSCHKE, Guilherme S., et al. Establishment of the family Zarkiaceae (Oscillatoriales, Cyanobacteria) and description of the new marine genera Zarkia (Zarkiaceae, Oscillatoriales) and Romeriopsis (Leptolyngbyaceae, Synechococcales), from northern Portugal. bioRxiv, 2021, 2021.04. 09.439031.
  • KRIVINA, E. S.; TEMRALEEVA, A. D.; BUKIN, Yu S. Species Delimitation and Cryptic Diversity Analysis of Parachlorella-Сlade Microalgae (Chlorophyta). Microbiology, 2021, 90: 455-469.
  • KUKLETOVA, I.; CHROMKOVA, I. Testing of biocidal properties of thermal insulation system during material life cycle. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2021. p. 012022.
  • KULA-MAXIMENKO, Monika; ZIELIŃSKI, Kamil Jan; ŚLESAK, Ireneusz. The role of selected wavelengths of light in the activity of photosystem II in gloeobacter violaceus. International Journal of Molecular Sciences, 2021, 22.8: 4021.
  • ŁUDZIK, Katarzyna, et al. Anti‑algal activity of the 12‑5‑12 gemini surfactant results from its impact on the photosynthetic apparatus. 2021.
  • MALTSEV, Yevhen, et al. Lipid accumulation by Coelastrella multistriata (Scenedesmaceae, Sphaeropleales) during nitrogen and phosphorus starvation. Scientific Reports, 2021, 11.1: 19818.
  • MARTER, Pia, et al. Filling the gaps in the Cyanobacterial tree of life—metagenome analysis of Stigonema ocellatum DSM 106950, Chlorogloea purpurea SAG 13.99 and Gomphosphaeria aponina DSM 107014. Genes, 2021, 12.3: 389.
  • MASOJÍDEK, Jiří, et al. Changes in photosynthesis, growth and biomass composition in outdoor Chlorella g120 culture during the metabolic shift from heterotrophic to phototrophic cultivation regime. Algal Research, 2021, 56: 102303.
  • MIKULA, Přemysl, et al. Synthetic biomimetic polymethacrylates: promising platform for the design of anti-cyanobacterial and anti-algal agents. Polymers, 2021, 13.7: 1025.
  • MISZTAK, Agnieszka E., et al. Comparative genomics and physiological investigation of a new Arthrospira/Limnospira strain O9. 13F isolated from an Alkaline, Winter Freezing, Siberian Lake. Cells, 2021, 10.12: 3411.
  • OLESZEK, Marta; KRZEMIŃSKA, Izabela. Biogas production from high-protein and rigid cell wall microalgal biomasses: Ultrasonication and FT-IR evaluation of pretreatment effects. Fuel, 2021, 296: 120676.
  • ONAY, Melih. Enhancing Phycoerythrin and Phycocyanin Production from Porphyridium Cruentum CCALA 415 in Synthetic Wastewater: The Application of Theoretical Methods on Microalgae. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2021, 25.3: 499-512.
  • PETRZIK, Karel; LUKAVSKÝ, Jaromír; KOLONIUK, Igor. Novel virus on filamentous Arthronema africanum cyanobacterium. Microbial ecology, 2021, 81.2: 454-459.
  • PRICE, Shawn, et al. Assessing the suitability of domestic wastewater as a medium for cyanobacterial Phb bioplastic production. Available at SSRN 3960547, 2021.
  • PRIMAHANA, Gian, et al. Amycolatomycins A and B, cyclic hexapeptides isolated from an Amycolatopsis sp. 195334CR. Antibiotics, 2021, 10.3: 261.
  • REARTE, Tomás Agustín, et al. Photosynthetic performance of Chlorella vulgaris R117 mass culture is moderated by diurnal oxygen gradients in an outdoor thin layer cascade. Algal Research, 2021, 54: 102176.
  • REICHELT, Niklas, et al. Epigenomic stability assessment during cryopreservation and physiology among various strains of Chromochloris zofingiensis (Chlorophyceae) and their genetic variability revealed by AFLP and MS-AFLP. Journal of Applied Phycology, 2021, 33.4: 2327-2340.
  • SAHA, Subarna, et al. Mycosporine-alanine, an oxo-mycosporine, protect Hassallia byssoidea from high UV and solar irradiation on the stone monument of Konark. Journal of Photochemistry and Photobiology B: Biology, 2021, 224: 112302.
  • SAMYLINA, Olga S., et al. Ecology and biogeography of the ‘marine Geitlerinema’cluster and a description of Sodalinema orleanskyi sp. nov., Sodalinema gerasimenkoae sp. nov., Sodalinema stali sp. nov. and Baaleninema simplex gen. et sp. nov.(Oscillatoriales, Cyanobacteria). FEMS Microbiology Ecology, 2021, 97.8: fiab104.
  • ŠRÉDLOVÁ, Kamila, et al. The sensitivity of multiple ecotoxicological assays for evaluating Microcystis aeruginosa cellular algal organic matter and contribution of cyanotoxins to the toxicity. Toxicon, 2021, 195: 69-77.
  • SZOTKOWSKI, Martin, et al. Bioreactor co-cultivation of high lipid and carotenoid producing yeast Rhodotorula kratochvilovae and several microalgae under stress. Microorganisms, 2021, 9.6: 1160.
  • TODOROVIĆ, Biljana, et al. Identification and content of astaxanthin and its esters from microalgae Haematococcus pluvialis by HPLC-DAD and LC-QTOF-MS after extraction with various solvents. Plants, 2021, 10.11: 2413.
  • UZUNER, Uğur. Comparison of Cellular Autofluorescence Patterns of Two Model Microalgae by Flow Cytometry. Celal Bayar University Journal of Science, 2021, 17.2: 159-165.
  • WARD, Ryan D., et al. Metagenome sequencing to explore phylogenomics of terrestrial cyanobacteria. Microbiology resource announcements, 2021, 10.22: 10.1128/mra. 00258-21.
  • WANG, Wei-Nan, et al. Comparison on characterization and antioxidant activity of exopolysaccharides from two Porphyridium strains. Journal of Applied Phycology, 2021, 33: 2983-2994.
  • WANG, Yilang, et al. Phylogenetic insights into chroococcus‐like taxa (Chroococcales, Cyanobacteria), describing Cryptochroococcus tibeticus gen. nov. sp. nov. and Limnococcus fonticola sp. nov. from Qinghai‐Tibet plateau. Journal of Phycology, 2021, 57.6: 1739-1748.
  • WINNICKI, Konrad, et al. Anti-algal activity of the 12-5-12 gemini surfactant results from its impact on the photosynthetic apparatus. Scientific Reports, 2021, 11.1: 2360.
  • XIE, Guo, et al. Characteristics of lipid biosynthesis in Chlorella pyrenoidosa as subjected to nutrient deficiency stress. Phycologia, 2021, 60.4: 384-393.

2020

  • ARC, Erwann, et al. Pre-akinete formation in Zygnema sp. from polar habitats is associated with metabolite re-arrangement. Journal of Experimental Botany, 2020.
  • BABAEI, Azadeh, et al. Photobiochemical changes in Chlorella g120 culture during trophic conversion (metabolic pathway shift) from heterotrophic to phototrophic growth regime. Journal of Applied Phycology, 2020, 1-12.
  • CANELLI, Greta, et al. Chlorella vulgaris in a heterotrophic bioprocess: Study of the lipid bioaccessibility and oxidative stability. Algal Research, 2020, 45: 101754.
  • CONKLIN, Kimberly Y., et al. Molecular and morphological characterization of a novel dihydroanatoxin-a producing Microcoleus species (cyanobacteria) from the Russian River, California, USA. Harmful Algae, 2020, 93: 101767.
  • DUFKOVÁ, Kristýna, et al. Screening of growth phases of Antarctic algae and cyanobacteria cultivated on agar plates by chlorophyll fluorescence imaging. Czech Polar Reports, 2020, 9.2: 170-181.
  • GHOBRINI, Djillali, et al. Heterotrophic cultivation of Chlorella vulgaris using saline waste water from the demineralization of cheese whey. Biotechnology Letters, 2020, 42.2: 209-217.
  • HYBSKÁ, Helena, et al. Biomonitoring and its Use in the Assessment of the Quality of Wastewater Treatment Process. Environmental Nanotechnology, Monitoring & Management, 2020, 100292.
  • KOBETIČOVÁ, Klára; FOŘT, Jan; ČERNÝ, Robert. Interactions of superabsorbent polymers based on acrylamide substances with microorganisms occurring in human dwellings. Ecotoxicology and Environmental Safety, 2020, 195: 110522.
  • KOUKOURAKI, Pelagia, et al. Antithrombotic properties of Spirulina extracts against platelet-activating factor and thrombin. Food Bioscience, 2020, 100686.
  • KOVALÁKOVÁ, Pavla. Ekotoxikologické hodnocení pokročilých technologií čištění vod založených na sloučeninách železa. PhD Thesis. Masarykova univerzita, Přírodovědecká fakulta.
  • KUMAR, Manish, et al. Bacterial production of fatty acid and biodiesel: opportunity and challenges. In: Refining Biomass Residues for Sustainable Energy and Bioproducts. Academic Press, 2020. p. 21-49.
  • MACCREADY, Joshua S.; BASALLA, Joseph L.; VECCHIARELLI, Anthony G. Origin and Evolution of Carboxysome Positioning Systems in Cyanobacteria. Molecular Biology and Evolution, 2020.
  • MALINA, Tomáš, et al. The environmental fate of graphene oxide in aquatic environment—Complete mitigation of its acute toxicity to planktonic and benthic crustaceans by algae. Journal of Hazardous Materials, 2020, 123027.
  • MYLENKO, Mykola, et al. Selenium Incorporation to Amino Acids in Chlorella Cultures Grown in Phototrophic and Heterotrophic Regimes. Journal of Agricultural and Food Chemistry, 2020, 68.6: 1654-1665.
  • NEDBAL, Jakub; GAO, Lu; SUHLING, Klaus. Bottom-Illuminated Orbital Shaker for Microalgae Cultivation. bioRxiv, 2020.
  • POTOCAR, Tomas, et al. Cooking oil-surfactant emulsion in water for harvesting Chlorella vulgaris by sedimentation or flotation. Bioresource Technology, 2020, 123508.
  • ŘEZANKA, Tomáš, et al. Lipidomic analysis of diatoms cultivated with silica nanoparticles. Phytochemistry, 2020, 177: 112452.
  • SACKEY, Lyndon NA; KOČÍ, Vladimir. Assessing the effects of tropical wood leachate to Desmodesmus subspicatus, Lemna minor and Daphnia magna. Heliyon, 2020, 6.7: e04268.
  • SINGH, Prashant, et al. Phylogenetic evaluation of the genus Nostoc and description of Nostoc neudorfense sp. nov., from the Czech Republic. International Journal of Systematic and Evolutionary Microbiology, 2020, 70.4: 2740-2749.
  • STRUNECKY, Otakar, et al. Diversity of cyanobacteria at the Alaska North Slope with description of two new genera: Gibliniella and Shackletoniella. FEMS microbiology ecology, 2020, 96.3: fiz189.
  • THU, Nanda Kyaw, et al. Morphological, biochemical, and molecular characterization of Oscillatoria kawamurae (Oscillatoriales, Cyanobacteria) isolated from different geographical regions. Phycological Research, 2020.

2019

  • BONGIOVANI, Natalia, et al. Biorefinery Approach from Nannochloropsis oceanica CCALA 978: Neutral Lipid and Carotenoid Co-Production Under Nitrate or Phosphate Deprivation. BioEnergy Research, 2019, 1-12.
  • DE SOUZA LEITE, Luan, et al. Interference of model wastewater components with flocculation of Chlorella sorokiniana induced by calcium phosphate precipitates. Bioresource technology, 2019, 286: 121352.
  • GOUVEIA, Joao D., et al. Associated bacteria of Botryococcus braunii (Chlorophyta). PeerJ, 2019, 7: e6610.
  • HORVÁTH, Nándor, et al. The reclassification of 37 strains from The Mosonmagyaróvár Algal Culture Collection, Hungary, which were previously identified as Anabaena (Cyanobacteria, Nostocaceae). South African Journal of Botany, 2019, 123: 333-340.
  • KATONA, Szabina, et al. Phylogenetic re-evaluation of previously identified Chlamydomonas (Chlorophyta, Chlamydomonadaceae) strains from The Mosonmagyaróvár Algal Culture Collection, Hungary, using molecular data. South African Journal of Botany, 2019, 125: 16-23.
  • MAREŠ, Jan, et al. Taxonomic resolution of the genus Cyanothece (Chroococcales, Cyanobacteria), with a treatment on Gloeothece and three new genera, Crocosphaera, Rippkaea, and Zehria. Journal of phycology, 2019, 55.3: 578-610.
  • PARRA, José, et al. Comparación nutricional entre dos cepas de Arthrospira maxima de origen geográfico incierto. Revista Latinoamericana de Biotecnología Ambiental y Algal, 2019, 10.2: 45-60.
  • PŘIBYL, Pavel; CEPÁK, Vladislav. Screening for heterotrophy in microalgae of various taxonomic positions and potential of mixotrophy for production of high-value compounds. Journal of Applied Phycology, 2019, 31.3: 1555-1564.
  • RANGLOVÁ, Karolína, et al. Rapid screening test to estimate temperature optima for microalgae growth using photosynthesis activity measurements. Folia microbiologica, 2019, 1-11.
  • SAVVIDES, Alexander L., et al. Lipid production from indigenous Greek microalgae: a possible biodiesel source. Biotechnology letters, 2019, 41.4-5: 533-545.
  • SHAH, Shivangi, et al. De novo transcriptome sequencing of Monodopsis subterranea CCALA 830 and identification of genes involved in the biosynthesis of eicosapentanoic acid and triacylglycerol. Vegetos, 2019, 1-9.
  • SHALYGIN, Sergei, et al. Odorella benthonica gen. & sp. nov.(Pleurocapsales, Cyanobacteria): an odor and prolific toxin producer isolated from a California aqueduct. Journal of phycology, 2019, 55.3: 509-520.
  • UHLIARIKOVÁ, Iveta, et al. Extracellular biopolymers produced by freshwater cyanobacteria: a screening study. Chemical Papers, 2019, 73.3: 771-776.
  • ŻYMAŃCZYK-DUDA, Ewa, et al. Reductive capabilities of different cyanobacterial strains towards acetophenone as a model substrate–Prospect of applications for chiral building blocks synthesis. Bioorganic chemistry, 2019.
  • ŻYSZKA-HABERECHT, Beata; POLIWODA, Anna; LIPOK, Jacek. ’Structural constraints in cyanobacteria-mediated whole-cell biotransformation of methoxylated and methylated derivatives of 2′-hydroxychalcone. Journal of biotechnology, 2019, 293: 36-46.

2018

  • AGUILERA, A., et al. The polyphasic analysis of two native Raphidiopsis isolates supports the unification of the genera Raphidiopsis and Cylindrospermopsis (Nostocales, Cyanobacteria). Phycologia, 2018, 57.2: 130-146.
  • BASHEVA, D., et al. Content of phycoerythrin, phycocyanin, alophycocyanin and phycoerythrocyanin in some cyanobacterial strains: Applications. Engineering in Life Sciences.
  • BARCYTĖ, D., et al. Burning coal spoil heaps as a new habitat for the extremophilic red alga Galdieria sulphuraria. FOTTEA, 2018, 18.1: 19-29.
  • BARCYTĖ, D., et al.Chloromonas arctica sp. nov., a psychrotolerant alga from snow in the High Arctic (Chlamydomonadales, Chlorophyta). International journal of systematic and evolutionary microbiology, 2018.
  • BARCYTĖ, D., et al.Chloromonas svalbardensis n. sp. with Insights into the Phylogroup Chloromonadinia (Chlorophyceae). Journal of Eukaryotic Microbiology, 2018.
  • BARCYTĖ, D.; ELSTER, J.; NEDBALOVÁ, L. Plastid‐encoded rbcL phylogeny suggests widespread distribution of Galdieria phlegrea (Cyanidiophyceae, Rhodophyta). Nordic Journal of Botany, 2018.
  • BRANYIKOVA, I., et al. Physicochemical approach to alkaline flocculation of Chlorella vulgaris induced by calcium phosphate precipitates. Colloids and Surfaces B: Biointerfaces, 2018, 166: 54-60.
  • CHAUDHARI, S. Systematic metabolic characterization of hydrocarbon and exo-polysaccharide producing microalga Botryococcus braunii. 2018.
  • CORNET, L., et al. Metagenomic assembly of new (sub) arctic Cyanobacteria and their associated microbiome from non-axenic cultures. bioRxiv, 2018, 287730.
  • DORIA, E., et al. Influence of Light Stress on the Accumulation of Xanthophylls and Lipids in Haematococcus Pluvialis CCALA 1081 Grown under Autotrophic or Mixotrophic Conditions. Journal of Marine Biology and Aquaculture, 2018, 4.1: 30-35.
  • DRZYZGA, D., et al. The aminophosphonate glyphosine enhances phycobiliprotein yields from selected cyanobacterial cultures. Journal of Applied Phycology, 2018, 30.1: 311-317.
  • DRZYZGA, D.; LIPOK, J. Glyphosate dose modulates the uptake of inorganic phosphate by freshwater cyanobacteria. Journal of applied phycology, 2018, 30.1: 299-309.
  • FAZELI DANESH, A., et al. Effective role of medium supplementation in microalgal lipid accumulation. Biotechnology and bioengineering, 2018, 115.5: 1152-1160.
  • FERRO, L.; GENTILI, F.G.; FUNK, C. Isolation and characterization of microalgal strains for biomass production and wastewater reclamation in Northern Sweden. Algal research, 2018, 32: 44-53.
  • GARCÍA-CUBERO, R., et al. Milking exopolysaccharides from Botryococcus braunii CCALA778 by membrane filtration. Algal Research, 2018, 34: 175-181.
  • GARCÍA-CUBERO, R., et al. Production of exopolysaccharide by Botryococcus braunii CCALA 778 under laboratory simulated Mediterranean climate conditions. Algal Research, 2018, 29: 330-336.
  • GENUARIO, D.B.; SANT'ANNA, C.L.; MELO, I.S. Elucidating the Cronbergia (cyanobacteria) dilemma with the description of Cronbergia amazonensis sp. nov. isolated from Solimões river (Amazonia, Brazil). Algal Research, 2018, 29: 233-241.
  • HALAJ, M., et al. Biopolymer of Dictyosphaerium chlorelloides-chemical characterization and biological effects. International journal of biological macromolecules, 2018, 113: 1248-1257.
  • HALAJ, M., et al. Chemico-physical and pharmacodynamic properties of extracellular Dictyosphaerium chlorelloides biopolymer. Carbohydrate Polymers, 2018.
  • HOLZINGER, A., et al. Arctic, Antarctic, and temperate green algae Zygnema spp. under UV-B stress: vegetative cells perform better than pre-akinetes. Protoplasma, 2018, 1-14.
  • KAŠTÁNEK, P., et al. Selective bioaccumulation of rubidium by microalgae from industrial wastewater containing rubidium and lithium. Journal of Applied Phycology, 2018, 30.1: 461-467.
  • KUKLETOVÁ, I.; CHROMKOVÁ, I. Testing of algae colonization growth risk on building materials. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2018. p. 012041.
  • KURMAYER, R., et al. Single colony genetic analysis of epilithic stream algae of the genus Chamaesiphon pp. Hydrobiologia, 2018, 811.1: 61-75.
  • MA, R., et al. LED power efficiency of biomass, fatty acid, and carotenoid production in Nannochloropsis microalgae. Bioresource technology, 2018, 252: 118-126.
  • MALTSEV, Y., et al. Description of a new species of soil algae, Parietochloris grandis sp. nov., and study of its fatty acid profiles under different culturing conditions. Algal Research, 2018, 33: 358-368.
  • MEIXNER, K., et al. Cyanobacteria Biorefinery—Production of poly (3-hydroxybutyrate) with Synechocystis salina and utilisation of residual biomass. Journal of biotechnology, 2018, 265: 46-53.
  • PIASECKA, A., et al. Effectiveness of Parachlorella kessleri cell disruption evaluated with the use of laser light scattering methods. Journal of Applied Phycology, 2018, 1-11.
  • ŘEZANKA, T., et al. Lipidomic analysis of Botryococcus (Trebouxiophyceae, Chlorophyta)-Identification of lipid classes containing very long chain fatty acids by offline two-dimensional LC-tandem MS. Phytochemistry, 2018, 148: 29-38.
  • SABER, A. A., et al. Novel green algal isolates from the Egyptian hyper‐arid desert oases: a polyphasic approach with a description of Pharao desertorum gen. et sp. nov.(Chlorophyceae, Chlorophyta). Journal of phycology, 2018.
  • SHEN, L., et al. Polyphasic examination on Merismopedia tenuissima CHAB 7021 from Ganjiang River, China revealed the polyphyly of the genus Merismopedia (Cyanobacteria). Journal of Oceanology and Limnology, 2018, 36.4: 1157-1165.
  • TAKESHITA, T., et al. Comparison of lipid productivity of Parachlorella kessleri heavy-ion beam irradiation mutant PK4 in laboratory and 150-L mass bioreactor, identification and characterization of its genetic variation. Algal Research, 2018, 35: 416-426.
  • VAN DEN BERG, T.E.; VAN OORT, B.; CROCE, R. Light-harvesting complexes of Botryococcus braunii. Photosynthesis research, 2018, 135.1-3: 191-201.
  • VÁZQUEZ, M., et al. Selection of microalgae with potential for cultivation in surfactant-stabilized foam. Algal research, 2018, 31: 216-224.
  • VELGOSOVA, O., et al. Green synthesis of Ag nanoparticles: Effect of algae life cycle on Ag nanoparticle production and long-term stability. Transactions of Nonferrous Metals Society of China, 2018, 28.5: 974-979.
  • WEISSMANNOVÁ, H., et al. Toxicity of Diclofenac: Cadmium Binary Mixtures to Algae Desmodesmus subspicatus Using Normalization Method. Bulletin of environmental contamination and toxicology, 2018, 101.2: 205-213.
  • YURCHENKO, T., et al. A gene transfer event suggests a long-term partnership between eustigmatophyte algae and a novel lineage of endosymbiotic bacteria. The ISME journal, 2018, 1.
  • ZHU, C., et al. Bicarbonate-based carbon capture and algal production system on ocean with floating inflatable-membrane photobioreactor. Journal of Applied Phycology, 2018, 30.2: 875-885.
  • ŻYSZKA-HABERECHT, B.; POLIWODA, A.; LIPOK, J. Biocatalytic hydrogenation of the C= C bond in the enone unit of hydroxylated chalcones—process arising from cyanobacterial adaptations. Applied microbiology and biotechnology, 2018, 1-15.

2017

  • BARCYTĖ, D.; HODAČ, L.; NEDBALOVÁ, L. Lunachloris lukesovae gen. et sp. nov.(Trebouxiophyceae, Chlorophyta), a novel coccoid green alga isolated from soil in South Bohemia, Czech Republic. European Journal of Phycology, 2017, 1-11. 
  • BUCKOVA, M., et al. Fast Ecotoxicity Detection Using Biosensors. Water, Air, & Soil Pollution, 2017, 228.4: 166 
  • DRZYZGA, D., et al. Biodegradation of the aminopolyphosphonate DTPMP by the cyanobacterium Anabaena variabilis proceeds via a C–P lyase‐independent pathway. Environmental microbiology, 2017, 19.3: 1065-1076. 
  • ELIÁŠ, M., et al. Eustigmatophyceae. Handbook of the Protists, 2017, 1-39.
  • ESTEVES-FERREIRA, A. A., et al. Cyanobacterial nitrogenases: phylogenetic diversity, regulation and functional predictions. Genetics and molecular biology, 2017, AHEAD: 0-0. 
  • GOECKE, F., et al. Effects of rare earth elements on growth rate, lipids, fatty acids and pigments in microalgae. Phycological Research, 2017. 
  • GÓRAK, M.; ŻYMAŃCZYK-DUDA, E. Reductive activity of free and immobilized cells of cyanobacteria toward oxophosphonates—comparative study. Journal of Applied Phycology, 2017, 29.1: 245-253. 
  • GOUVEIA, J.D., et al. Botryococcus braunii strains compared for biomass productivity, hydrocarbon and carbohydrate content. Journal of Biotechnology, 2017, 248: 77-86. 
  • HARTMANN, A.;MURAUER, A.; GANZERA, M. Quantitative analysis of mycosporine-like amino acids in marine algae by capillary electrophoresis with diode-array detection. Journal of pharmaceutical and biomedical analysis, 2017, 138: 153-157.
  • HAŠLER, P., et al. Jacksonvillea apiculata (Oscillatoriales, Cyanobacteria) gen. & sp. nov.: a new genus of filamentous, epipsamic cyanobacteria from North Florida. Phycologia, 2017, 56.3: 284-295.
  • KOVALCIK, A., et al. Characterization of polyhydroxyalkanoates produced by Synechocystis salina from digestate supernatant. International Journal of Biological Macromolecules, 2017, 102: 497-504.
  • KUMAR, D., et al. The green alga Dictyosphaerium chlorelloides biomass and polysaccharides production deteremined using cultivation in crossed gradients of temperature and light. Engineering in Life Sciences.
  • MOUDŘÍKOVÁ, Š., et al. Raman microscopy shows that nitrogen-rich cellular inclusions in microalgae are microcrystalline guanine. Algal Research, 2017, 23: 216-222.
  • PIASECKA, A.; KRZEMIŃSKA, I.; TYS, J. Enrichment of Parachlorella kessleri biomass with bioproducts: oil and protein by utilization of beet molasses. Journal of Applied Phycology, 2017, 1-9.
  • ŘEZANKA, T., et al. Lipidomic analysis of two closely related strains of the microalga Parietochloris (Trebouxiophyceae, Chlorophyta). Algal Research, 2017, 25: 473-482.
  • ŘEZANKA, T., et al. Pilot cultivation of the green alga Monoraphidium sp. producing a high content of polyunsaturated fatty acids in a low-temperature environment. Algal Research, 2017, 22: 160-165.
  • SCHREIBER, C., et al. Growth of algal biomass in laboratory and in large-scale algal photobioreactors in the temperate climate of western Germany. Bioresource Technology, 2017, 234: 140-149.
  • SHEBANOVA, A., et al. Versatility of the green microalga cell vacuole function as revealed by analytical transmission electron microscopy. Protoplasma, 2017, 254.3: 1323-1340.
  • SMUTNÁ, M., et al. Retinoid-like compounds produced by phytoplankton affect embryonic development of Xenopus laevis. Ecotoxicology and environmental safety, 2017, 138: 32-38.
  • ŠUTOVSKÁ, M., et al. The chemical profile and pharmacodynamic properties of extracellular Wollea saccata biopolymer. International Journal of Biological Macromolecules, 2017, 103: 863-869.
  • VAN DEN BERG, T.E.; VAN OORT, B.; CROCE, R. Light-harvesting complexes of Botryococcus braunii. Photosynthesis Research, 2017, 1-11.
  • WOOD, S.A., et al. Phylogenetic characterisation of marine Chroococcus-like (Cyanobacteria) strains from the Pacific region. New Zealand Journal of Botany, 2017, 55.1: 5-13.
  • ŻYSZKA, B.; ANIOŁ, M.; LIPOK, J. Modulation of the growth and metabolic response of cyanobacteria by the multifaceted activity of naringenin. PloS one, 2017, 12.5: e0177631.

2016

  • BAULINA, O., et al. Diversity of the nitrogen starvation responses in subarctic Desmodesmus sp.(Chlorophyceae) strains isolated from symbioses with invertebrates. FEMS Microbiology Ecology, 2016, fiw031.
  • BERRENDERO GOMEZ, E., et al. Macrochaete gen. nov.(Nostocales, Cyanobacteria), a taxon morphologically and molecularly distinct from Calothrix. Journal of Phycology, 2016.
  • ČAPKOVÁ, K., et al. Some Like it High! Phylogenetic Diversity of High-Elevation Cyanobacterial Community from Biological Soil Crusts of Western Himalaya. Microbial ecology, 2016, 71.1: 113-123.
  • GÓRAK, M.; ŻYMAŃCZYK-DUDA, E. Reductive activity of free and immobilized cells of cyanobacteria toward oxophosphonates—comparative study. Journal of Applied Phycology, 2016, 1-9.
  • HEESCH, S. et al. Prasiolales (Trebouxiophyceae, Chlorophyta) of the Svalbard Archipelago: diversity, biogeography and description of the new genera Prasionella and Prasionema. European Journal of Phycology, 2016, 1-17.
  • HLAVOVÁ, M.; VÍTOVÁ, M.; BIŠOVÁ, K. Synchronization of Green Algae by Light and Dark Regimes for Cell Cycle and Cell Division Studies. Plant Cell Division: Methods and Protocols, 2016, 3-16.
  • HODAČ, L., et al. Widespread green algae Chlorella and Stichococcus exhibit polar-temperate and tropical-temperate biogeography. FEMS Microbiology Ecology, 2016, fiw122.
  • KALINOVÁ, J.P., et al. Uptake of caprolactam and its influence on growth and oxygen production of Desmodesmus quadricauda algae. Environmental Pollution, 2016, 213: 518-523.
  • KUPRIYANOVA, E.V., et al. The complete genome of a cyanobacterium from a soda lake reveals the presence of the components of CO2-concentrating mechanism. Photosynthesis Research, 1-15.
  • LI, T., et al. The acclimation of Chlorella to high-level nitrite for potential application in biological NOx removal from industrial flue gases. Journal of Plant Physiology, 2016, 195: 73-79.
  • MOUDŘÍKOVÁ, Š., et al. Raman and fluorescence microscopy sensing energy-transducing and energy-storing structures in microalgae. Algal Research, 2016, 16: 224-232.
  • MOUTEL, B., et al. Development of a screening procedure for the characterization of Botryococcus braunii strains for biofuel application. Process Biochemistry, 2016.
  • PICHRTOVÁ, M., et al. Formation of lipid bodies and changes in fatty acid composition upon pre-akinete formation in Arctic and Antarctic Zygnema (Zygnematophyceae, Streptophyta) strains. FEMS microbiology ecology, 2016, 92.7: fiw096.
  • PŘIBYL, P., et al. The role of light and nitrogen in growth and carotenoid accumulation in Scenedesmus sp. Algal Research, 2016, 16: 69-75.
  • ŘEZANKA, T., et al. The effect of lanthanides on photosynthesis, growth, and chlorophyll profile of the green alga Desmodesmus quadricauda. Photosynthesis Research, 2016, 1-12.
  • SCIUTO, K.; MORO, I. Detection of the new cosmopolitan genus Thermoleptolyngbya (Cyanobacteria, Leptolyngbyaceae) using the 16S rRNA gene and 16S–23S ITS region. Molecular Phylogenetics and Evolution, 2016, 105: 15-35.
  • ŠEVČÍKOVÁ, T. et al. A comparative analysis of mitochondrial genomes in eustigmatophyte algae. Genome Biology and Evolution, 2016, evw027.
  • TOULOUPAKIS, E., et al. Effect of high pH on growth of Synechocystis sp. PCC 6803 cultures and their contamination by golden algae (Poterioochromonas sp.). Applied microbiology and biotechnology, 2016, 100.3: 1333-1341.
  • URAJOVÁ, P., et al. A liquid chromatography–mass spectrometric method for the detection of cyclic β-amino fatty acid lipopeptides. Journal of Chromatography A, 2016.
  • WAGNER, J., et al. Co-production of bio-oil and propylene through the hydrothermal liquefaction of polyhydroxybutyrate producing cyanobacteria. Bioresource Technology, 2016, 207: 166-174.

2015

  • APOSTOLOVA, E. L., et al. Influence of the sanosil-induced oxidative stress on the photosynthetic apparatus of different strains of green algae and cyanobacteria. Indian Journal of Plant Physiology, 2015, 20.4: 333-338.
  • BICAS, J.L., KLEINEGRIS, D.M. and BARBOSA, M.J. "Use of methylene blue uptake for assessing cell viability of colony-forming microalgae." Algal Research 8 (2015): 174-180.
  • BOHUNICKÁ, M. et al. "Roholtiella, gen. nov.(Nostocales, Cyanobacteria)—a tapering and branching cyanobacteria of the family Nostocaceae." Phytotaxa 197.2 (2015): 84-103.
  • BOHUNICKÁ, M. et al. A combined morphological, ultrastructural, molecular, and biochemical study of the peculiar family Gomontiellaceae (Oscillatoriales) reveals a new cylindrospermopsin‐producing clade of cyanobacteria. Journal of Phycology 51.6 (2015): 1040 - 1054
  • CYBULSKA, J., et al. Nanostructure features of microalgae biopolymer. Starch‐Stärke, 2015.
  • da SILVA MALONE, C.F., et al. "Cephalothrix gen. nov.(Cyanobacteria): towards an intraspecific phylogenetic evaluation by multi-locus analyses." International journal of systematic and evolutionary microbiology (2015): ijs-0.
  • EDREVA, A. M., POUNEVA, I.D. and GESHEVA, E.Z. "UV-B radiation induces biphasic burst of hydrogen peroxide in mesophyll Chlorella vulgaris." Russian Journal of Plant Physiology 62.2 (2015): 219-223.
  • FAWLEY, M.W.; JAMESON, I.; FAWLEY, K.P. The phylogeny of the genus Nannochloropsis (Monodopsidaceae, Eustigmatophyceae), with descriptions of N. australis sp. nov. and Microchloropsis gen. nov. Phycologia, 2015, 54.5: 545-552.
  • GOECKE, F. , et al. "Use of lanthanides to alleviate the effects of metal ion-deficiency in Desmodesmus quadricauda (Sphaeropleales, Chlorophyta)." Name: Frontiers in Microbiology 6.2 (2015).
  • HARTMANN, A.; ALBERT, A.; GANZERA, M. Effects of elevated ultraviolet radiation on primary metabolites in selected alpine algae and cyanobacteria. Journal of Photochemistry and Photobiology B: Biology, 2015, 149: 149-155.
  • HARTMANN, A., et al. Analysis of Mycosporine-Like Amino Acids in Selected Algae and Cyanobacteria by Hydrophilic Interaction Liquid Chromatography and a Novel MAA from the Red Alga Catenella repens. Marine drugs, 2015, 13.10: 6291-6305.
  • HLAVOVÁ, Monika; VÍTOVÁ, Milada; BIŠOVÁ, Kateřina. Synchronization of Green Algae by Light and Dark Regimes for Cell Cycle and Cell Division Studies. Plant Cell Division: Methods and Protocols, 2016, 3-16.
  • JONAS, A., et al. "Endocrine, teratogenic and neurotoxic effects of cyanobacteria detected by cellular in vitro and zebrafish embryos assays." Chemosphere 120 (2015): 321-327.
  • MALETEROVA, Y., et al. "Microalgae for Bioenergy: Key Technology Nodes." The Scientific World Journal 2015 (2015).
  • MIKULEC, J. et al. "Flocculation Using Polyacrylamide Polymers for Fresh Microalgae." Chemical Engineering & Technology (2015).
  • MOUTEL, B, et al. "Assessing the biofuel production potential of Botryococcus braunii strains by sensitive rapid qualitative chemotyping using chemometrically-assisted gas chromatography–mass spectrometry." Algal Research 11 (2015): 33-42.
  • ORZEŁ, Ł., et al. Fine tuning of copper (II)–chlorophyll interactions in organic media. Metalation versus oxidation of the macrocycle. Dalton Transactions, 2015, 44.13: 6012-6022.
  • PÁDROVÁ, K., et al. Trace concentrations of iron nanoparticles cause overproduction of biomass and lipids during cultivation of cyanobacteria and microalgae. Journal of Applied Phycology, 2015, 27.4: 1443-1451.
  • PETRZIK, K., et al. "Platinum Anniversary: Virus and Lichen Alga Together More than 70 Years." PloS one 10.3 (2015): e0120768.
  • PŘIBYL, Pavel, et al. "Elevated production of carotenoids by a new isolate of Scenedesmus sp." Algal Research 11 (2015): 22-27.
  • ŘEZANKA, T.; NEDBALOVÁ, L.; SIGLER, K. Comparative analysis of triacylglycerols from different Stichococcus strains by RP-HPLC/APCI-MS and chiral HPLC. Journal of Applied Phycology, 2015, 27.2: 685-696.
  • ŘEZANKA, T., et al. "Temperature dependence of production of structured triacylglycerols in the alga Trachydiscus minutus." Phytochemistry (2015).
  • SCIUTO, K., et al.Chodatodesmus australis sp. nov.(Scenedesmaceae, Chlorophyta) from Antarctica, with the emended description of the genus Chodatodesmus, and circumscription of Flechtneria rotunda gen. et sp. nov. Journal of Phycology, 2015.
  • ŠEVČÍKOVÁ, T., et al. "Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte [quest]." Scientific Reports 5 (2015).
  • TASHYREVA, D., and ELSTER, J. "Effect of Nitrogen Starvation on Desiccation Tolerance of Arctic Microcoleus Strains (Cyanobacteria)." Name: Frontiers in Microbiology 6 (2015): 278.
  • VALDEZ-OJEDA, R. et al. "Characterization of five fresh water microalgae with potential for biodiesel production." Algal Research 7 (2015): 33-44.

2014

  • APOSTOLOVA, E., et al. "Effect of UV-B radiation on photosystem II functions in Antarctic and mesophilic strains of a green alga Chlorella vulgaris and a cyanobacterium Synechocystis salina." Indian Journal of Plant Physiology 19.2 (2014): 111-118.
  • BONGIOVANI, N., et al. "Molecular and phylogenetic identification of an oil-producing strain of Nannochloropsis oceanica (Eustigmatophyceae) isolated from the southwestern Atlantic coast (Argentina)." Rev. biol. mar. oceanogr49.3 (2014): 615-623.
  • CEPÁK, V., et al. "Optimization of cultivation conditions for fatty acid composition and EPA production in the eustigmatophycean microalga Trachydiscus minutus." Journal of Applied Phycology 26.1 (2014): 181-190.
  • DMYTRYK, A.,SAEID, A. and CHOJNACKA, K. "Biosorption of Microelements by Spirulina: Towards Technology of Mineral Feed Supplements." The Scientific World Journal 2014 (2014).
  • GARDEVA, E., et al. "Antitumor activity of C-phycocyanin from Arthronema africanum (Cyanophyceae)." Brazilian Archives of Biology and TechnologyAHEAD (2014): 0-0.
  • HAUER, T., et al. "Reassessment of the cyanobacterial family Microchaetaceae and establishment of new families Tolypothrichaceae and Godleyaceae." Journal of Phycology 50.6 (2014): 1089-1100.
  • JAKUBOWSKA, N., and SZELAG-WASIELEWSKA, E. "Toxic Picoplanktonic Cyanobacteria—Review." Marine drugs 13.3 (2015): 1497-1518.
  • JEHLIČKA, J., et al. "Potential and limits of Raman spectroscopy for carotenoid detection in microorganisms: implications for astrobiology." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372.2030 (2014): 20140199.
  • JOHANSEN, J.R., et al. "Morphological and molecular characterization within 26 strains of the genus Cylindrospermum (Nostocaceae, Cyanobacteria), with descriptions of three new species." Journal of Phycology 50.1 (2014): 187-202.
  • JONAS, A., et al. "Retinoid-like activity and teratogenic effects of cyanobacterial exudates." Aquatic Toxicology 155 (2014): 283-290.
  • KAŠTOVSKÝ, J., et al. "Cyanocohniella calida gen. et sp. nov. (Cyanobacteria: Aphanizomenonaceae) a new cyanobacterium from the thermal springs from Karlovy Vary, Czech Republic." Phytotaxa 181.5 (2014): 279-292.
  • LUKEŠ, M., et al. "Temperature dependence of photosynthesis and thylakoid lipid composition in the red snow alga Chlamydomonas cf. nivalis (Chlorophyceae)." FEMS microbiology ecology (2014).
  • MAREŠ, J., et al. "A Hybrid Non-Ribosomal Peptide/Polyketide Synthetase Containing Fatty-Acyl Ligase (FAAL) Synthesizes the β-Amino Fatty Acid Lipopeptides Puwainaphycins in the Cyanobacterium Cylindrospermum alatosporum." PloS one 9.11 (2014): e111904.
  • MUDIMU, O., et al. "Biotechnological Screening of Microalgal and Cyanobacterial Strains for Biogas Production and Antibacterial and Antifungal Effects." Metabolites 4.2 (2014): 373-393.
  • MÜHLSTEINOVÁ, R., et al. "Polyphasic characterization of Kastovskya adunca gen. nov. et comb. nov. (Cyanobacteria: Oscillatoriales), from desert soils of the Atacama Desert, Chile." Phytotaxa 163.4 (2014): 216-228.
  • MÜHLSTEINOVÁ, R., et al. "Polyphasic characterization of Trichocoleus desertorum sp. nov. (Pseudanabaenales, Cyanobacteria) from desert soils and phylogenetic placement of the genus Trichocol eus." Phytotaxa 163.5 (2014): 241-261.
  • OSORIO-SANTOR, K., et al. "Seven new species of Oculatella (Pseudanabaenales, Cyanobacteria): taxonomically recognizing cryptic diversification." European Journal of Phycology 49.4 (2014): 450-470.
  • PÁDROVÁ, K., et al. "Trace concentrations of iron nanoparticles cause overproduction of biomass and lipids during cultivation of cyanobacteria and microalgae." Journal of Applied Phycology (2014): 1-9.
  • PETRASIAK, N., et al. "Phylogenetic placement of Symplocastrum (Phormidiaceae, Cyanophyceae) with a new combination S. californicum and two new species: S. flechtnerae and S. torsivum." Phycologia 53.6 (2014): 529-541.
  • PICHRTOVÁ, M., KULICHOVÁ, J. and HOLZINGER, A. "Nitrogen Limitation and Slow Drying Induce Desiccation Tolerance in Conjugating Green Algae (Zygnematophyceae, Streptophyta) from Polar Habitats." PloS one 9.11 (2014): e113137.
  • PILÁT, Z., et al. "Raman tweezers in microfluidic systems for analysis and sorting of living cells." SPIE BiOS. International Society for Optics and Photonics, 2014.
  • ŘEHÁKOVÁ, K., et al. "Nodularia (Cyanobacteria, Nostocaceae): a phylogenetically uniform genus with variable phenotypes." (2014).
  • ŘEZANKA, T., NEDBALOVÁ, L., and SIGLER, K. "Comparative analysis of triacylglycerols from different Stichococcus strains by RP-HPLC/APCI-MS and chiral HPLC." Journal of Applied Phycology (2014): 1-12.
  • SILVA, C.S.P., et al. "Phylogeny of culturable cyanobacteria from Brazilian mangroves." Systematic and applied microbiology 37.2 (2014): 100-112.
  • STRUNECKÝ, O., KOMÁREK, J. and ŠMARDA, J. "Kamptonema (Microcoleaceae, Cyanobacteria), a new genus derived from the polyphyletic Phormidium on the basis of combined molecular and cytomorphological markers." Preslia 86.2 (2014): 193-208.
  • TAHIR, S. Raceway-based production of microalgae for possible use in making biodiesel: a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Biotechnology at Massey University, Palmerston North, New Zealand. Diss. The author, 2014.
  • TAKESHITA, T., et al. "Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions." Bioresource technology 158 (2014): 127-134.
  • TRZCINSKA, M., et al. "Genetic and morphological characteristics of two ecotypes of Eustigmatos calaminaris sp. nov.(Eustigmatophyceae) inhabiting Zn–and Pb–loaded calamine mine spoils." FOTTEA 14.1 (2014): 1-13.
  • VAIČIULYTÉ, S., et al. "Batch Growth of Chlorella Vulgaris CCALA 896 versus Semi-Continuous Regimen for Enhancing Oil-Rich Biomass Productivity."Energies 7.6 (2014): 3840-3857.
  • VALDEZ-OJEDA, R., et al. "Characterization of five fresh water microalgae with potential for biodiesel production." Algal Research 7 (2015): 33-44.
  • WILDE, S.B., et al. "Aetokthonos hydrillicola gen. et sp. nov.: Epiphytic cyanobacteria on invasive aquatic plants implicated in Avian Vacuolar Myelinopathy." Phytotaxa 181.5 (2014): 243-260.

2013

  • BONGIOVANI, N., et al. "In vivo measurements to estimate culture status and neutral lipid accumulation in Nannochloropsis oculata CCALA 978: implications for biodiesel oil studies." Algological Studies 142.1 (2013): 3-16.
  • BURGOS, A., et al. "Effect of copper and lead on two consortia of phototrophic microorganisms and their capacity to sequester metals." Aquatic Toxicology 140 (2013): 324-336.
  • CORRESPONDENCIA, E. "Análisis morfológico y localización de las especies bacterianas que cohabitan co lan cyanobacteria Arthrospirasp. Utilizando microscopía electrónica de barrido." Acta Microscopica 22.2 (2013): 195-204.
  • ELIÁŠ, M., et al. "A case of taxonomic inflation in coccoid algae: Ellipsoidion parvum and Neocystis vischeri are conspecific with Neocystis (= Nephrodiella) brevis (Chlorophyta, Trebouxiophyceae)." Phytotaxa 76.2 (2013): 15-27.
  • FAWLEY, K.P., ELIÁŠ, M. and FAWLEY, M.W. "The diversity and phylogeny of the commercially important algal class Eustigmatophyceae, including the new clade Goniochloridales." Journal of Applied Phycology: 1-10.
  • FERNANDES, B., et al. "Relationship between starch and lipid accumulation induced by nutrient depletion and replenishment in the microalga Parachlorella kessleri" Bioresource technology 144 (2013): 268-274.
  • HAUER, T., BOHUNICKÁ, M. and MÜHLSTEINOVÁ, R. "Calochaete gen. nov.(Cyanobacteria, Nostocales), a new cyanobacterial type from the “páramo” zone in Costa Rica." Phytotaxa 109.1 (2013): 36-44.
  • KAUFNEROVÁ, V. and ELIÁŠ, M. "The demise of the genus Scotiellopsis Vinatzer (Chlorophyta)." Nova Hedwigia 97.3-4 (2013): 415-428.
  • KOMÁREK, J., et al. "Phenotype diversity and phylogeny of selected Scytonema–species (Cyanoprokaryota) from SE Brazil." (2013).
  • KOMÁREK, J., et al. "Polyphasic evaluation of Limnoraphis robusta, a water-bloom forming cyanobacterium from Lake Atitlán, Guatemala, with a description of Limnoraphis gen. nov." Fottea 13 (2013): 39-52.
  • KOMÁRKOVÁ, J., ZAPOMĚLOVÁ, E. and KOMÁREK, J. "Chakia (cyanobacteria), a new heterocytous genus from Belizean marshes identified on the basis of the 16S rRNA gene." FOTTEA 13.2 (2013): 227-233.
  • KVÍDEROVÁ, J. and ELSTER, J. "Standardized algal growth potential and/or algal primary production rates of maritime Antarctic stream waters (King George Island, South Shetlands)." Polar Research 32 (2013).
  • KVÍDEROVÁ, J., HÁJEK, J. and WORLAND, R.M. "The ice nucleation activity of extremophilic algae." CryoLetters 34.2 (2013): 137-148.
  • LI, X., et al. "The microalga Parachlorella kessleri – A novel highly efficient lipid producer." Biotechnology and bioengineering 110.1 (2013): 97-107.
  • MAREŠ, J., et al. "The primitive thylakoid-less cyanobacterium Gloeobacter is a common rock-dwelling organism." PloS one 8.6 (2013): e66323.
  • MAREŠ, J., et al. "Validation of the Generic Name Gloeobacter Rippka et al. 1974, Cyanophyceae." Cryptogamie, Algologie 34.3 (2013): 255-262.
  • PICHRTOVÁ, M., et al. "Changes in phenolic compounds and cellular ultrastructure of Arctic and Antarctic strains of Zygnema (Zygnematophyceae, Streptophyta) after exposure to experimentally enhanced UV to PAR ratio." Microbial ecology 65.1 (2013): 68-83.
  • PILÁT, Z., et al. "Optical trapping of microalgae at 735–1064nm: Photodamage assessment." Journal of Photochemistry and Photobiology B: Biology 121 (2013): 27-31.
  • PŘIBYL, P. "Light is a crucial signal for zoosporogenesis and gametogenesis in some green microalgae." European Journal of Phycology 48.1 (2013): 106-115.
  • PŘIBYL, P., CEPÁK, V. and ZACHLEDER, V. "Production of lipids and formation and mobilization of lipid bodies in Chlorella vulgaris." Journal of Applied Phycology 25.2 (2013): 545-553.
  • ROLDÁN, M., et al. "Chalicogloea cavernicola gen. nov., sp. nov.(Chroococcales, Cyanobacteria), from low-light aerophytic environments: combined molecular, phenotypic and ecological criteria." International journal of systematic and evolutionary microbiology 63.Pt 6 (2013): 2326-2333.
  • SAEID, A., et al. "Biomass of Spirulina maxima enriched by biosorption process as a new feed supplement for swine." Journal of applied phycology 25.2 (2013): 667-675.
  • SIRMEROVA, M., et al. "Adhesion of Chlorella vulgaris to solid surfaces, as mediated by physicochemical interactions." Journal of Applied Phycology 25.6 (2013): 1687-1695.
  • SKÁCELOVÁ, K., et al. "Biodiversity of freshwater algae and cyanobacteria on deglaciated northern part of James Ross Island, Antarctica. A preliminary study." Czech Polar Reports 3 (2013): 93-106.
  • STRUNECKÝ, O., et al. "Molecular and morphological criteria for revision of the genus Microcoleus (Oscillatoriales, Cyanobacteria)." Journal of Phycology 49.6 (2013): 1167-1180.
  • ŠETLÍKOVÁ, E., et al. "Isolation and characterization of oxygen-evolving photosystem II particles and photosystem II core complex from the filamentous cyanobacterium Spirulina platensis." Photosynthetica 51.4 (2013): 517-530.
  • ŠEVČÍKOVÁ, T., et al. "Completion of cell division is associated with maximum telomerase activity in naturally synchronized cultures of the green alga Desmodesmus quadricauda." FEBS letters 587.6 (2013): 743-748.
  • ŠKALOUD, P., et al. "A curious occurrence of Hazenia broadyi spec. nova in Antarctica and the review of the genus Hazenia (Ulotrichales, Chlorophyceae)."Polar biology 36.9 (2013): 1281-1291.
  • TASHYREVA, D., ELSTER, J. and BILLI, D. "A novel staining protocol for multiparameter assessment of cell heterogeneity in Phormidium populations (cyanobacteria) employing fluorescent dyes." PloS one 8.2 (2013): e55283.
  • VILUMBRALES, D.M., SKÁCELOVÁ, K. and BARTÁK, M. "Sensitivity of Antarctic freshwater algae to salt stress assessed by fast chlorophyll fluorescence transient."
  • VREDENBER, W. and PRÁŠIL, O. "On the polyphasic quenching kinetics of chlorophyll a fluorescence in algae after light pulses of variable length." Photosynthesis research 117.1-3 (2013): 321-337.

2012

  • CHATCHAWAN, T., et al. "Oxynema, a new genus separated from the genus Phormidium (Cyanophyta)." Cryptogamie, Algologie 33.1 (2012): 41-59.
  • DORIA, E., et al. "Isolation and characterization of a Scenedesmus acutus strain to be used for bioremediation of urban wastewater." Journal of Applied Phycology 24.3 (2012): 375-383.
  • DVOŘÁK, P., HAŠLER, P. and POULÍČKOVÁ, A. "Phylogeography of the Microcoleus vaginatus (cyanobacteria) from three continents–a spatial and temporal characterization." PloS one 7.6 (2012): e40153.
  • GARDEVA, E., et al. "Cytotoxic and Apoptogenic Potential of Red Microalgal Polysaccharides." Biotechnology & Biotechnological Equipment 26.4 (2012): 3167-3172.
  • KIM, B.-H., et al. "Simple, rapid and cost-effective method for high quality nucleic acids extraction from different strains of Botryococcus braunii." PloS one 7.5 (2012): e37770.
  • KOMÁREK, J., NEDBALOVÁ, L. and HAUER, T. "Phylogenetic position and taxonomy of three heterocytous cyanobacteria dominating the littoral of deglaciated lakes, James Ross Island, Antarctica." Polar biology 35.5 (2012): 759-774.
  • KRIENITZ, L., et al. "Genotypic diversity of Dictyosphaerium–morphospecies (Chlorellaceae, Trebouxiophyceae) in African inland waters, including the description of four new genera." Fottea 12 (2012): 231-253.
  • NOVÁKOVÁ, K., BLÁHA, L. and BABICA, P. "Tumor promoting effects of cyanobacterial extracts are potentiated by anthropogenic contaminants–Evidence from< i> in vitro study." Chemosphere 89.1 (2012): 30-37.
  • POŘÍZKA, P., et al. "Application of laser-induced breakdown spectroscopy to the analysis of algal biomass for industrial biotechnology." Spectrochimica Acta Part B: Atomic Spectroscopy 74 (2012): 169-176.
  • PŘIBYL, P., et al. "Zoosporogenesis, morphology, ultrastructure, pigment composition of Trachydiscus minutus (Eustigmatophyceae, Heterokontophyta) 1." Journal of Phycology 48.1 (2012): 231-242.
  • PŘIBYL, P., CEPÁK, V. and ZACHLEDER, V. "Production of lipids in 10 strains of Chlorella and Parachlorella, and enhanced lipid productivity in Chlorella vulgaris." Applied microbiology and biotechnology 94.2 (2012): 549-561.
  • ŘEZANKA, T., et al. "Regioisomer separation and identification of triacylglycerols containing vaccenic and oleic acids, and α-and γ-linolenic acids, in thermophilic cyanobacteria Mastigocladus laminosus and Tolypothrix sp." Phytochemistry 78 (2012): 147-155.
  • SAEID, A., CHOJNACKA, K. and BALKOWSKI, G. "Two-phase exponential model for describing kinetics of biosorption of Cr (III) ions by microalgae Spirulina maxima." Chemical Engineering Journal 197 (2012): 49-55.
  • SCIUTO, K., et al. "Polyphasic approach and typification of selected Phormidium strains (Cyanobacteria)." Cladistics 28.4 (2012): 357-374.
  • SIMIS, S.G.H. and KAUKO, H.M. "In vivo mass-specific absorption spectra of phycobilipigments through selective bleaching." Limnol. Oceanogr.: Methods 10 (2012): 214-226.
  • SYASINA, I.G., et al. "Phylogenetic and morphological characterization of the green alga infesting the horse mussel Modiolus modiolus from Vityaz Bay (Peter the Great Bay, Sea of Japan)." Journal of invertebrate pathology 111.2 (2012): 175-181.
  • SYCHROVÁ, E., et al. "Estrogenic activity in extracts and exudates of cyanobacteria and green algae." Environment international 39.1 (2012): 134-140.

2011

  • DRAGONE, G., et al. "Nutrient limitation as a strategy for increasing starch accumulation in microalgae." Applied Energy 88.10 (2011): 3331-3335.
  • CAISOVÁ, L., et al. "Polyphyly od Chaetophora and Stigeoclonium within the Chaetophorales (Chlorophyceae), revealed by sequence comparisons and nuclear-encoden SSU rRNA genes." Journal of Phycology 47.1 (2011): 164-177.
  • HISEM, D., et al. "Cyanobacterial cytotoxicity versus toxicity to brine shrimp Artemia salina." Toxicon 57.1 (2011): 76-83.
  • HROUZEK, P., et al. "Cytotoxicity and secondary metabolites production in terrestrial Nostoc strains, originating from different climatic/geographic regions and habitats: is their cytotoxicity environmentally dependent?." Environmental toxicology 26.4 (2011): 345-358.
  • ILIEV, I., et al. "Influence of temperature and light intensity on the growth and composition of Trachydiscus minutus."
  • JOHANSEN, J.R., et al. "Utility of 16S-23S ITS sequence and secondary structure for recognition of intrageneric and intergeneric limits within cyanobacterial taxa: Leptolyngbya corticola sp. nov.(Pseudanabaenaceae, Cyanobacteria)." Nova Hedwigia 92.3-4 (2011): 3-4.
  • KACZOR, A. and BARANSKA, M. "Structural changes of carotenoid astaxanthin in a single algal cell monitored in situ by Raman spectroscopy." Analytical chemistry 83.20 (2011): 7763-7770.
  • KOMÁREK, J., KAŠTOVSKÝ, J. and JEZBEROVÁ, J. "Phylogenetic and taxonomic delimitation of the cyanobacterial genus Aphanothece and description of Anathece gen. nov." European Journal of Phycology 46.3 (2011): 315-326.
  • KOVÁČIK, Ľ., et al. "Ecological characteristics and polyphasic taxonomic classification of stable pigment-types of the genus Chroococcus (Cyanobacteria)." Preslia 83 (2011): 145-166.
  • Корховий, В. І., et al. "Генетична диференціація штамів Botryococcus braunii Kütz.—продуцентів ліпідів—за допомогою RAPD фінгерпринтингу." Доповіді НАН України (2011).
  • LUKAVSKÝ, J., FURNADZHIEVA, S. and PILARSKI, P. "Cyanobacteria of the thermal spring at Pancharevo, Sofia, Bulgaria." Acta Botanica Croatica 70.2. (2011): 191-208.
  • PALINSKA, K.A., et al. "A taxonomic study on Phormidium–group (cyanobacteria) based on morphology, pigments, RAPD molecular markers and RFLP analysis of the 16S rRNA gene fragment." Fottea 11.1 (2011): 41-55.
  • PICHRTOVÁ, M. "Cryoprotective mechanisms in different strains of green alga Zygnema–An ice nucleation activity study." CAREX (Coordination Action for Research Activities on life in Extreme Environments) is.
  • PILÁT, Z., et al. "Raman microspectroscopy of algal lipid bodies: β-carotene as a volume sensor." Photonics Prague 2011. International Society for Optics and Photonics, 2011.
  • SALIM, S.,et al. "Harvesting of microalgae by bio-flocculation." Journal of applied phycology 23.5 (2011): 849-855.
  • SAMEK, O., et al. "Characterization of microorganisms using Raman tweezers." SPIE NanoScience+ Engineering. International Society for Optics and Photonics, 2011.
  • SAMEK, O., et al. "Raman microspectroscopy based sensor of algal lipid unsaturation." SPIE Optics+ Optoelectronics. International Society for Optics and Photonics, 2011.
  • SHUKLA, S.P., KVÍDEROVÁ, J. and ELSTER, J. "Nutrient requirements of polar Chlorella-like species." Czech Polar Reports 1 (2011): 1-10.
  • SCHRÖFEL, A., et al. "Biosynthesis of gold nanoparticles using diatoms—silica-gold and EPS-gold bionanocomposite formation." Journal of nanoparticle research 13.8 (2011): 3207-3216.
  • STAMENKOVIĆ. M. and HANELT, D. "Growth and photosynthetic characteristics of several Cosmarium strains (Zygnematophyceae, Streptophyta) isolated from various geographic regions under a constant light-temperature regime." Aquatic Ecology 45.4 (2011): 455-472.
  • STRUNECKÝ, O., ELSTER, J. and KOMÁREK, J. "Taxonomic revision of the freshwater cyanobacterium “Phormidiummurrayi= Wilmottia murrayi." Fottea 11 (2011): 57-71.
  • ŠTĚPÁNKOVÁ, T., et al. "In vitro modulation of intracellular receptor signaling and cytotoxicity induced by extracts of cyanobacteria, complex water blooms and their fractions." Aquatic Toxicology 105.3 (2011): 497-507.
  • TATON, A., et al. "Plectolyngbya hodgsonii: a novel filamentous cyanobacterium from Antarctic lakes." Polar biology 34.2 (2011): 181-191.
  • TEKAYA, N., et al. "Impedimetric characterization of alginate entrapped Arthrospira platensis at a platinum/electrolyte interface. effect of cadmium ions." Sensor Letters 9.6 (2011): 2327-2331.
  • VÍTOVÁ, M., et al. "Glutathione peroxidase activity in the selenium-treated alga Scenedesmus quadricauda." Aquatic Toxicology 102.1 (2011): 87-94.

2010

  • DOUŠKOVÁ, I., et al. "Utilization of distillery stillage for energy generation and concurrent production of valuable microalgal biomass in the sequence: Biogas-cogeneration-microalgae-products." Energy Conversion and Management 51.3 (2010): 606-611.
  • HINDÁK, F. and HINDÁKOVÁ, A. "First report of Makinoella tosaensis OKADA (Chlorophyta, Chlorococcales, Oocystaceae) outside East Asia." Fottea 10 (2010): 141-144.
  • HOSHINA, R., IWATAKI, M. and IMAMURA, N. "Chlorella variabilis and Micractinium reisseri sp. nov.(Chlorellaceae, Trebouxiophyceae): Redescription of the endosymbiotic green algae of Paramecium bursaria (Peniculia, Oligohymenophorea) in the 120th year." Phycological research 58.3 (2010): 188-201.
  • ILIEV, I., et al. "The alga Trachydiscus minutus (Pseudostraurastrum minutum): grow and composition." General and Applied Plant Physiology 36.3-4 (2010): 222-231.
  • IVANOVA, K.G., et al. "The biliprotein C-phycocyanin modulates the early radiation response: A pilot study." Mutation Research/Genetic Toxicology and Environmental Mutagenesis 695.1 (2010): 40-45.
  • KAŠTÁNEK, F., et al. "In-field experimental verification of cultivation of microalgae Chlorella sp. using the flue gas from a cogeneration unit as a source of carbon dioxide." Waste Management & Research 28.11 (2010): 961-966.
  • KOMÁRKOVÁ, J., et al. "Variability of Chroococcus (Cyanobacteria) morphospecies with regard to phylogenetic relationships." Hydrobiologia 639.1 (2010): 69-83.
  • KVÍDEROVÁ, J. "Rapid algal toxicity assay using variable chlorophyll fluorescence for Chlorella kessleri (Chlorophyta)." Environmental toxicology 25.6 (2010): 554-563.
  • SAMEK, O., et al. "Raman spectroscopy for the characterization of algal cells." 17th Slovak-Czech-Polish Optical Conference on Wave and Quantum Aspects of Contemporary Optics. International Society for Optics and Photonics, 2010.
  • SAMEK, O., et al. "Raman microspectroscopy of individual algal cells: sensing unsaturation of storage lipids in vivo." Sensors 10.9 (2010): 8635-8651.
  • SKŘIVAN, M., et al. "The use of selenium-enriched alga Scenedesmus quadricauda in a chicken diet." Czech Journal of Animal Science 55 (2010): 565-571.
  • STRUNECKÝ, O., ELSTER, J. and KOMÁREK, J.  "Phylogenetic relationships between geographically separate Phormidium cyanobacteria: is there a link between north and south polar regions?." Polar biology 33.10 (2010): 1419-1428.

Older publications associated with our collection

  • BASLEROVÁ,M. and DVOŘÁKOVÁ,J. "Algarum, Hepaticarum Muscorumque in culturis collectio. 1962, NCSAV, Praha, 59 pp.
  • ELSTER, J. et al. "Collection of algal strains isolated in polar regions" Abstract and oral presentation - section chairman. IIR International Conference Joined Meeting of the IIR with the Society for Low Temperature Biology. Cryopreservation and safe keeping of cells and tissues. May 13-15 2002, Hradec Králové.
  • HINDÁK,F. "Culture collection of algae at Laboratory of algology in Třeboň." Arch.Hydrobiol./Suppl.39, Algological Studies 2/3 (1970):86-126.
  • LHOTSKÝ,O. "Algenkulturensammlungen in der ČSSR und die Bezeichning der kultivierten Algenstamme." Proc. Conf. Res. Algae, Hungary (1969): pp.265-278.
  • LISA,L. and DVOŘÁKOVÁ,J. "The supplement to the cataloque of cultures." Arch. Hydrobiol./ Suppl. 39, Algological Studies 2/3 (1970): 127-130.
  • LUKAVSKÝ,J. "Collection of Autotrophic Organisms" Index seminum et plantarum, Inst. Bot. Acad. Sci. Bohemosl. (1983): 25-27.
  • LUKAVSKÝ,J. "Collection of Autotrophic Organisms (2): Livers (Hepaticea)." Index seminum et plantarum, Inst. Bot.Acad.Sci.Bohemosl. (1984): 39-42
  • LUKAVSKÝ,J., et al. "Catalogue of algal and cyanobacterial strains of Culture Collection of Autotrophic Organisms at Trebon." - Algological Studies 63 (1992): 59-112.
  • PRÁT,S. "Algarum, Hepaticarum, Muscorumque in Culturis Collectio. Plantarum physiologiae institutum Universitatis Carolianae" Preslia (Praha). 22/23 (1948), 12pp.
2023-07-25hobit

CyanoDB

http://www.cyanodb.cz
2023-07-25hobit

AlgaeBase

https://www.algaebase.org